• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 22
  • 14
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 114
  • 83
  • 54
  • 40
  • 34
  • 27
  • 18
  • 18
  • 17
  • 16
  • 16
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Umělá neuronová síť RCE / Artificial neural network RCE

Maceček, Aleš January 2013 (has links)
This paper is focused on an artificial neural network RCE, especially describing the topology, properties and learning algorithm of the network. This paper describes program uTeachRCE developed for learning the RCE network and program RCEin3D, which is created to visualize the RCE network in 3D space. The RCE network is compared with a multilayer neural network with a learning algorithm backpropagation in the practical application of recognition letters. For a descriptions of the letters were chosen moments invariant to rotation, translation and scaling image.
92

MODELIZACIÓN DE LA VOLATILIDAD CONDICIONAL EN ÍNDICES BURSÁTILES : COMPARATIVA MODELO EGARCH VERSUS RED NEURONAL BACKPROPAGATION

Oliver Muncharaz, Javier 20 February 2014 (has links)
El siguiente proyecto de tesis pretende mostrar y verificar cómo las redes neuronales, en concreto, la red backpropagation son una alternativa para la predicción de la volatilidad condicional frente a los modelos econométricos clásicos de la familia GARCH. El estudio se realiza para diferentes índices bursátilies de diferentes tamaños y zonas geográficas, así como para datos tanto diarios como de alta frecuencia utilizando para la comparativa uno de los modelos más extendidos para el estudio de la volatildiad condicional en índices bursátiles como el EGARCH, dada la existencia comprobada de asimetrías en la volatildiad de dichos índices. La elección de la red neuronal backpropagation viene motivada por ser una de las redes neuronales más extendidas en su uso en finanzas por su capacidad de generalización método de aprendizaje basada en la relga delta generalizada. / Oliver Muncharaz, J. (2014). MODELIZACIÓN DE LA VOLATILIDAD CONDICIONAL EN ÍNDICES BURSÁTILES : COMPARATIVA MODELO EGARCH VERSUS RED NEURONAL BACKPROPAGATION [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/35803 / Alfresco
93

Lithium-Ion Battery State of Charge Modelling based on Neural Networks

Chukka, Vasu 06 April 2022 (has links)
Lithium-ion (Li-ion) batteries have become a crucial factor in the recent electro-mobility trend. People's increased interest in electric vehicles (EVs) has motivated several automotive manufacturers and research organizations to develop suitable drivetrain designs involving batteries. Especially the development of the 48V Li-ion battery has been of great importance to reduce CO2 emissions and meet emission standards. However, accurately modeling Li-ion batteries is a difficult task since multiple factors have to be considered. Conservative Methods are using pyhsico-chemical models or electrical circuits in order to mimic the battery behavior. This thesis deals with developing a Li-ion battery model using artificial neural network (ANN) algorithms to predict the state of charge (SOC) as one of the key battery management system states. Due to the rising power of GPUs and the amount of available data, ANNs became popular in recent years. ANNs are also applicable to different areas of battery technology. Using battery data like the battery voltage, temperature, and current as input features, a neural network is trained that predicts battery SOC. A novel approach based on ANNs and one of the most commonly used SOC estimation methods are presented in this thesis to model the battery behavior. Furthermore, an approach for dealing with the highly unbalanced data by creating multidimensional bins and compare different neural network architectures for time series forecasting is introduced. By creating the model, our main priority is to reduce the model's errors in extreme operating areas of the battery. According to our results, long short-term memory (LSTM) architectures appear to be the best fit for this task. Finally, the developed ANN model can successfully learn battery behavior, however the model's accuracy under harsh operating circumstances is highly dependent on the data quality gathered.
94

Deep learning in event-based neuromorphic systems / L'apprentissage profond dans les systèmes évènementiels, bio-inspirés

Thiele, Johannes C. 22 November 2019 (has links)
Inférence et apprentissage dans les réseaux de neurones profonds nécessitent une grande quantité de calculs qui, dans beaucoup de cas, limite leur intégration dans les environnements limités en ressources. Les réseaux de neurones évènementiels de type « spike » présentent une alternative aux réseaux de neurones artificiels classiques, et promettent une meilleure efficacité énergétique. Cependant, entraîner les réseaux spike demeure un défi important, particulièrement dans le cas où l’apprentissage doit être exécuté sur du matériel de calcul bio-inspiré, dit matériel neuromorphique. Cette thèse constitue une étude sur les algorithmes d’apprentissage et le codage de l’information dans les réseaux de neurones spike.A partir d’une règle d’apprentissage bio-inspirée, nous analysons quelles propriétés sont nécessaires dans les réseaux spike pour rendre possible un apprentissage embarqué dans un scénario d’apprentissage continu. Nous montrons qu’une règle basée sur le temps de déclenchement des neurones (type « spike-timing dependent plasticity ») est capable d’extraire des caractéristiques pertinentes pour permettre une classification d’objets simples comme ceux des bases de données MNIST et N-MNIST.Pour dépasser certaines limites de cette approche, nous élaborons un nouvel outil pour l’apprentissage dans les réseaux spike, SpikeGrad, qui représente une implémentation entièrement évènementielle de la rétro-propagation du gradient. Nous montrons comment cette approche peut être utilisée pour l’entrainement d’un réseau spike qui est capable d’inférer des relations entre valeurs numériques et des images MNIST. Nous démontrons que cet outil est capable d’entrainer un réseau convolutif profond, qui donne des taux de reconnaissance d’image compétitifs avec l’état de l’art sur les bases de données MNIST et CIFAR10. De plus, SpikeGrad permet de formaliser la réponse d’un réseau spike comme celle d’un réseau de neurones artificiels classique, permettant un entraînement plus rapide.Nos travaux introduisent ainsi plusieurs mécanismes d’apprentissage puissants pour les réseaux évènementiels, contribuant à rendre l’apprentissage des réseaux spike plus adaptés à des problèmes réels. / Inference and training in deep neural networks require large amounts of computation, which in many cases prevents the integration of deep networks in resource constrained environments. Event-based spiking neural networks represent an alternative to standard artificial neural networks that holds the promise of being capable of more energy efficient processing. However, training spiking neural networks to achieve high inference performance is still challenging, in particular when learning is also required to be compatible with neuromorphic constraints. This thesis studies training algorithms and information encoding in such deep networks of spiking neurons. Starting from a biologically inspired learning rule, we analyze which properties of learning rules are necessary in deep spiking neural networks to enable embedded learning in a continuous learning scenario. We show that a time scale invariant learning rule based on spike-timing dependent plasticity is able to perform hierarchical feature extraction and classification of simple objects of the MNIST and N-MNIST dataset. To overcome certain limitations of this approach we design a novel framework for spike-based learning, SpikeGrad, which represents a fully event-based implementation of the gradient backpropagation algorithm. We show how this algorithm can be used to train a spiking network that performs inference of relations between numbers and MNIST images. Additionally, we demonstrate that the framework is able to train large-scale convolutional spiking networks to competitive recognition rates on the MNIST and CIFAR10 datasets. In addition to being an effective and precise learning mechanism, SpikeGrad allows the description of the response of the spiking neural network in terms of a standard artificial neural network, which allows a faster simulation of spiking neural network training. Our work therefore introduces several powerful training concepts for on-chip learning in neuromorphic devices, that could help to scale spiking neural networks to real-world problems.
95

Statistical modelling by neural networks

Fletcher, Lizelle 30 June 2002 (has links)
In this thesis the two disciplines of Statistics and Artificial Neural Networks are combined into an integrated study of a data set of a weather modification Experiment. An extensive literature study on artificial neural network methodology has revealed the strongly interdisciplinary nature of the research and the applications in this field. An artificial neural networks are becoming increasingly popular with data analysts, statisticians are becoming more involved in the field. A recursive algoritlun is developed to optimize the number of hidden nodes in a feedforward artificial neural network to demonstrate how existing statistical techniques such as nonlinear regression and the likelihood-ratio test can be applied in innovative ways to develop and refine neural network methodology. This pruning algorithm is an original contribution to the field of artificial neural network methodology that simplifies the process of architecture selection, thereby reducing the number of training sessions that is needed to find a model that fits the data adequately. [n addition, a statistical model to classify weather modification data is developed using both a feedforward multilayer perceptron artificial neural network and a discriminant analysis. The two models are compared and the effectiveness of applying an artificial neural network model to a relatively small data set assessed. The formulation of the problem, the approach that has been followed to solve it and the novel modelling application all combine to make an original contribution to the interdisciplinary fields of Statistics and Artificial Neural Networks as well as to the discipline of meteorology. / Mathematical Sciences / D. Phil. (Statistics)
96

Empirical RF Propagation Modeling of Human Body Motions for Activity Classification

Fu, Ruijun 19 December 2012 (has links)
"Many current and future medical devices are wearable, using the human body as a conduit for wireless communication, which implies that human body serves as a crucial part of the transmission medium in body area networks (BANs). Implantable medical devices such as Pacemaker and Cardiac Defibrillators are designed to provide patients with timely monitoring and treatment. Endoscopy capsules, pH Monitors and blood pressure sensors are used as clinical diagnostic tools to detect physiological abnormalities and replace traditional wired medical devices. Body-mounted sensors need to be investigated for use in providing a ubiquitous monitoring environment. In order to better design these medical devices, it is important to understand the propagation characteristics of channels for in-body and on- body wireless communication in BANs. The IEEE 802.15.6 Task Group 6 is officially working on the standardization of Body Area Network, including the channel modeling and communication protocol design. This thesis is focused on the propagation characteristics of human body movements. Specifically, standing, walking and jogging motions are measured, evaluated and analyzed using an empirical approach. Using a network analyzer, probabilistic models are derived for the communication links in the medical implant communication service band (MICS), the industrial scientific medical band (ISM) and the ultra- wideband (UWB) band. Statistical distributions of the received signal strength and second order statistics are presented to evaluate the link quality and outage performance for on-body to on- body communications at different antenna separations. The Normal distribution, Gamma distribution, Rayleigh distribution, Weibull distribution, Nakagami-m distribution, and Lognormal distribution are considered as potential models to describe the observed variation of received signal strength. Doppler spread in the frequency domain and coherence time in the time domain from temporal variations is analyzed to characterize the stability of the channels induced by human body movements. The shape of the Doppler spread spectrum is also investigated to describe the relationship of the power and frequency in the frequency domain. All these channel characteristics could be used in the design of communication protocols in BANs, as well as providing features to classify different human body activities. Realistic data extracted from built-in sensors in smart devices were used to assist in modeling and classification of human body movements along with the RF sensors. Variance, energy and frequency domain entropy of the data collected from accelerometer and orientation sensors are pre- processed as features to be used in machine learning algorithms. Activity classifiers with Backpropagation Network, Probabilistic Neural Network, k-Nearest Neighbor algorithm and Support Vector Machine are discussed and evaluated as means to discriminate human body motions. The detection accuracy can be improved with both RF and inertial sensors."
97

Calibration of Two Dimensional Saccadic Electro-Oculograms Using Artificial Neural Networks

Coughlin, Michael J., n/a January 2003 (has links)
The electro-oculogram (EOG) is the most widely used technique for recording eye movements in clinical settings. It is inexpensive, practical, and non-invasive. Use of EOG is usually restricted to horizontal recordings as vertical EOG contains eyelid artefact (Oster & Stern, 1980) and blinks. The ability to analyse two dimensional (2D) eye movements may provide additional diagnostic information on pathologies, and further insights into the nature of brain functioning. Simultaneous recording of both horizontal and vertical EOG also introduces other difficulties into calibration of the eye movements, such as different gains in the two signals, and misalignment of electrodes producing crosstalk. These transformations of the signals create problems in relating the two dimensional EOG to actual rotations of the eyes. The application of an artificial neural network (ANN) that could map 2D recordings into 2D eye positions would overcome this problem and improve the utility of EOG. To determine whether ANNs are capable of correctly calibrating the saccadic eye movement data from 2D EOG (i.e. performing the necessary inverse transformation), the ANNs were first tested on data generated from mathematical models of saccadic eye movements. Multi-layer perceptrons (MLPs) with non-linear activation functions and trained with back propagation proved to be capable of calibrating simulated EOG data to a mean accuracy of 0.33° of visual angle (SE = 0.01). Linear perceptrons (LPs) were only nearly half as accurate. For five subjects performing a saccadic eye movement task in the upper right quadrant of the visual field, the mean accuracy provided by the MLPs was 1.07° of visual angle (SE = 0.01) for EOG data, and 0.95° of visual angle (SE = 0.03) for infrared limbus reflection (IRIS®) data. MLPs enabled calibration of 2D saccadic EOG to an accuracy not significantly different to that obtained with the infrared limbus tracking data.
98

Difference target propagation

Lee, Dong-Hyun 07 1900 (has links)
No description available.
99

Statistical modelling by neural networks

Fletcher, Lizelle 30 June 2002 (has links)
In this thesis the two disciplines of Statistics and Artificial Neural Networks are combined into an integrated study of a data set of a weather modification Experiment. An extensive literature study on artificial neural network methodology has revealed the strongly interdisciplinary nature of the research and the applications in this field. An artificial neural networks are becoming increasingly popular with data analysts, statisticians are becoming more involved in the field. A recursive algoritlun is developed to optimize the number of hidden nodes in a feedforward artificial neural network to demonstrate how existing statistical techniques such as nonlinear regression and the likelihood-ratio test can be applied in innovative ways to develop and refine neural network methodology. This pruning algorithm is an original contribution to the field of artificial neural network methodology that simplifies the process of architecture selection, thereby reducing the number of training sessions that is needed to find a model that fits the data adequately. [n addition, a statistical model to classify weather modification data is developed using both a feedforward multilayer perceptron artificial neural network and a discriminant analysis. The two models are compared and the effectiveness of applying an artificial neural network model to a relatively small data set assessed. The formulation of the problem, the approach that has been followed to solve it and the novel modelling application all combine to make an original contribution to the interdisciplinary fields of Statistics and Artificial Neural Networks as well as to the discipline of meteorology. / Mathematical Sciences / D. Phil. (Statistics)
100

Klasifikace vzorů pomocí fuzzy neuronových sítí / Fuzzy Neural Networks for Pattern Classification

Ollé, Tamás January 2012 (has links)
Práce popisuje základy principu funkčnosti neuronů a vytvoření umělých neuronových sítí. Je zde důkladně popsána struktura a funkce neuronů a ukázán nejpoužívanější algoritmus pro učení neuronů. Základy fuzzy logiky, včetně jejich výhod a nevýhod, jsou rovněž prezentovány. Detailněji je popsán algoritmus zpětného šíření chyb a adaptivní neuro-fuzzy inferenční systém. Tyto techniky poskytují efektivní způsoby učení neuronových sítí.

Page generated in 0.1934 seconds