• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 12
  • 10
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 144
  • 51
  • 46
  • 38
  • 24
  • 20
  • 17
  • 16
  • 15
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Design, implementation, and characterisation of a novel lidar ceilometer

Vande Hey, Joshua D. January 2013 (has links)
A novel lidar ceilometer prototype based on divided lens optics has been designed, built, characterised, and tested. The primary applications for this manufacturable ground-based sensor are the determination of cloud base height and the measurement of vertical visibility. First, the design, which was developed in order to achieve superior performance at a low cost, is described in detail, along with the process used to develop it. The primary design considerations of optical signal to noise ratio, range-dependent overlap of the transmitter and receiver channels, and manufacturability, were balanced to develop an instrument with good signal to noise ratio, fast turn-on of overlap for detection of close range returns, and a minimised number of optical components and simplicity of assembly for cost control purposes. Second, a novel imaging method for characterisation of transmitter-receiver overlap as a function of range is described and applied to the instrument. The method is validated by an alternative experimental method and a geometric calculation that is specific to the unique geometry of the instrument. These techniques allow the calibration of close range detection sensitivity in order to acquire information prior to full overlap. Finally, signal processing methods used to automate the detection process are described. A novel two-part cloud base detection algorithm has been developed which combines extinction-derived visibility thresholds in the inverted cloud return signal with feature detection on the raw signal. In addition, standard approaches for determination of visibility based on an iterative far boundary inversion method, and calibration of attenuated backscatter profile using returns from a fully-attenuating water cloud, have been applied to the prototype. The prototype design, characterisation, and signal processing have been shown to be appropriate for implementation into a commercial instrument. The work that has been carried out provides a platform upon which a wide range of further work can be built.
102

Recrystallization of L-605 cobalt superalloy during hot-working process

Favre, Julien 25 September 2012 (has links) (PDF)
Co-20Cr-15W-10Ni alloy (L-605) is a cobalt-based superalloy combining high strength with keeping high ductility, biocompatible and corrosion resistant. It has been used successfully for heart valves for its chemical inertia, and this alloy is a good candidate for stent elaboration. Control of grain size distribution can lead to significant improvement of mechanical properties: in one hand grain refinement enhance the material strength, and on the other hand large grains provide the ductility necessary to avoid the rupture in use. Therefore, tailoring the grain size distribution is a promising way to adapt the mechanical properties to the targeted applications. The grain size can be properly controlled by dynamic recrystallization during the forging process. Therefore, the comprehension of the recrystallization mechanism and its dependence on forging parameters is a key point of microstructure design approach. The optimal conditions for the occurrence of dynamic recrystallization are determined, and correlation between microstructure evolution and mechanical behavior is investigated. Compression tests are carried out at high-temperature on Thermec-master Z and Gleeble forging devices, followed by gas or water quench. Mechanical behavior of the material at high temperature is analyzed in detail, and innovative methods are proposed to determine the metallurgical mechanisms at stake during the deformation process. Mechanical properties of the material after hot-working and annealing treatments are investigated. The grain growth kinetics of L-605 alloy is determined, and experimental results are compared with the static recrystallization process. Microstructures after hot deformation are evaluated using SEM-EBSD and TEM. Significant grain refinement occurs by dynamic recrystallization for high temperature and low strain rate (T≥1100 ◦ C, strain rate < 0.1s−1), and at high strain rate (strain rate > 10s−1). Dynamic recrystallization is discontinuous and takes place from the grain boundaries, leading to a necklace structure. The nucleation mechanism is most likely to be bulging from grain boundaries and twin boundaries. A new insight of the modeling of dynamic recrystallization taking as a starting point the experimental data is proposed. By combining the results from the mechanical behavior study and microstructure observation, the recrystallization at steady-state is thoroughly analyzed and provides the mobility of grain boundaries. The nucleation criterion for the bulging from grain boundaries is reformulated to a more general expression suitable for any initial grain size. Nucleation frequency can be deduced from experimental data at steady-state through modeling, and is extrapolated to any deformation condition. From this point, a complete analytical model of the dynamic recrystallization is established, and provides a fair prediction on the mechanical behavior and the microstructure evolution during the hot-working process.
103

LOW TEMPERATURE CLEAVAGE FRACTURE OF MICROALLOYED BAINITIC PLATE STEELS

EL-KHAZEN, JOHN 07 August 2009 (has links)
Low temperature cleavage fracture behaviour was investigated using four experimental microalloyed bainitic plate steels. The four plate samples were produced by different thermomechanical processing (TMP) schedules and had yield strengths in the range 540 - 670 MPa. Microstructures were characterized by optical microscopy (OM), scanning electron microscopy (SEM) and electron back scattered diffraction (EBSD). Quantitative data was obtained for prior austenite grain (PAG) size, volume fractions of two bainite types (conventional bainite and acicular ferrite) and EBSD 15° domain size. Charpy impact tests (using two notch orientations) were carried out over a range of temperatures. Cleavage facet sizes were measured on -196°C Charpy samples. The range of TMP schedules produced variations in PAG width, type of bainite and 15° domain size. The effects of these three microstructural features on cleavage crack propagation are discussed. Results indicate that the microstructures are controlled by i) deformation below TNR and ii) accelerated cooling rate. Domain structure reflects TMP. There is no clear correlation between domain size and cleavage facet size. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2009-07-30 19:17:01.25
104

Key Data for the Reference and Relative Dosimetry of Radiotherapy and Diagnostic and Interventional Radiology Beams

Benmakhlouf, Hamza January 2015 (has links)
Accurate dosimetry is a fundamental requirement for the safe and efficient use of radiation in medical applications. International Codes of Practice, such as IAEA TRS-398 (2000) for radiotherapy beams and IAEA TRS-457 (2007) for diagnostic radiology beams, provide the necessary formulation for reference and relative dosimetry and the data required for their implementation. Research in recent years has highlighted the shortage of such data for radiotherapy small photon beams and for surface dose estimations in diagnostic and interventional radiology, leading to significant dosimetric errors that in some instances have jeopardized patient’s safety and treatment efficiency. The aim of this thesis is to investigate and determine key data for the reference and relative dosimetry of radiotherapy and radiodiagnostics beams. For that purpose the Monte Carlo system PENELOPE has been used to simulate the transport of radiation in different media and a number of experimental determinations have also been made. A review of the key data for radiotherapy beams published after the release of IAEA TRS-398 was conducted, and in some cases the considerable differences found were questioned under the criterion of data consistency throughout the dosimetry chain (from standards laboratories to the user). A modified concept of output factor, defined in a new international formalism for the dosimetry of small photon beams, requires corrections to dosimeter readings for the dose determination in small beams used clinically. In this work, output correction factors were determined, for Varian Clinac 6 MV photon beams and Leksell Gamma Knife Perfexion 60Co gamma-ray beams, for a large number of small field detectors, including air and liquid ionization chambers, shielded and unshielded silicon diodes and diamond detectors, all of which were simulated by Monte Carlo with great detail. Backscatter factors and ratios of mass energy-absorption coefficients required for surface (skin) determinations in diagnostic and interventional radiology applications were also determined, as well as their extension to account for non-standard phantom thicknesses and materials. A database of these quantities was created for a broad range of monoenergetic photon beams and computer codes developed to convolve the data with clinical spectra, thus enabling the determination of key data for arbitrary beam qualities. Data presented in this thesis has been contributed to the IAEA international dosimetry recommendations for small radiotherapy beams and for diagnostic radiology in paediatric patients. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 6: Manuscript.</p>
105

On the experimental design of the material microstructures

Staraselski, Yauheni 03 May 2014 (has links)
The design techniques of the components on the macro level are established in the scientific community, however are far behind from the real material performance limits. To obtain those limits, the deeper understanding of the material structure is required. The methods of a new comonents production through standard alloying are the basis of the modern material science manufacturing. The design of the materials with expected required performance limits is the next conceptual step for the materials scientist. As results, to make this step, the problem of a precise material structure analyses on the microstructural level is one os the major importance for the next generation materials design. The complexity of the material structure across the scales(macro-micro) requires a new non deterministic methods for better understanding of the connectivity betwen a materials performance and material microstructure features. This work presents a various new research methodologies and techniques of the material microstructure characterization and numerical design with future applications to the anlyses of the material behavior. The focus of the particular research was to analyse a new cross correlation function of the material structure on the micro length scale and develop a novel framework which allows a better understanding of various important material phenomenas such as failure initiation and recrystallization.
106

High-frequency modulated-backscatter communication using multiple antennas

Griffin, Joshua David 02 March 2009 (has links)
Backscatter radio - the broad class of systems that communicate using scattered electromagnetic waves - is the driving technology behind many compelling applications such as radio frequency identification (RFID) tags and passive sensors. These systems can be used in many ways including article tracking, position location, passive temperature sensors, passive data storage, and in many other systems which require information exchange between an interrogator and a small, low-cost transponder with little-to-no transponder power consumption. Although backscatter radio is maturing, such systems have limited communication range and reliability caused, in part, by multipath fading. The research presented in this dissertation investigates how multipath fading can be reduced using multiple antennas at the interrogator transmitter, interrogator receiver, and on the transponder, or RF tag. First, two link budgets for backscatter radio are presented and fading effects demonstrated through a realistic, 915 MHz, RFID-portal example. Each term in the link budget is explained and used to illuminate the propagation and high-frequency effects that influence RF tag operation. Second, analytic envelope distributions for the M x L x N, dyadic backscatter channel - the general channel in which a backscatter system with M transmitter, L RF tag, and N receiver antennas operates - are derived. The distributions show that multipath fading can be reduced using multiple-antenna RF tags and by using separate transmitter and receiver antenna arrays at the interrogator. These results are verified by fading measurements of the M x L x N, dyadic backscatter channel at 5.8 GHz - the center of the 5725-5850 MHz unlicensed industrial, scientific, and medical (ISM) frequency band that offers reduced antenna size, increased antenna gain, and, in some cases, reduced object attachment losses compared to the commonly used 902-928 MHz ISM band. Measurements were taken with a custom backscatter testbed and details of its design are provided. In the end, this dissertation presents both theory and measurements that demonstrate multipath fading reductions for backscatter-radio systems that use multiple antennas.
107

Towards Long-Range Backscatter Communication with Tunnel Diode Reflection Amplifiers

Eriksson, Gustav January 2018 (has links)
Backscatter communication enables wireless communication at a power consumption orders of magnitude lower than conventional wireless communication. Instead of generating new RF-signals backscatter communication leverages ambient signals, such as WiFi-, Bluetooth- or TV-signals, and reflects them by changing the impedance of the antenna. Backscatter communication is known as a short-range communication technique achieving ranges in the order of meters. To improve the communication range, we explore the use of a tunnel diode as an amplifier of the backscattered RF-signal. We developed the amplifier on a PCB-board together with a matching network tuned to give maximum gain at 868 MHz. Our work demonstrates that the 1N3712 tunnel diode can achieve gains up to 35 dB compared to a tag without amplification while having a peak power consumption of 48 μW. With this amplifier the communication distance can be increased by up to two orders of magnitude.
108

Evolução tectônica e reologia de uma crosta orogênica quente: o caso do Anatexito Carlos Chagas, Faixa Araçuaí (Leste do Brasil) / Tectonic evolution and rheology of a hot orogenic crust: the case of the Carlos Chagas anatexite, Araçuaí belt (Eastern Brazil)

Geane Carolina Gonçalves Cavalcante 21 November 2013 (has links)
A Faixa Araçuaí foi formada no Neoproterozóico a partir da colisão E-W entre os continentes Sul-Americano e Africano. Sua porção leste compreende uma extensa área migmatítica (~300 km de comprimento por 50-100 km de largura) onde afloram anatexitos e leucogranitos (unidade Carlos Chagas), kinzigitos e granulitos migmatizados, que provavelmente são o registro de uma ampla fusão parcial da crosta intermediária a inferior. Observações de campo associadas com evidências micro-estruturais indicam que a deformação ocorreu quando as rochas estavam incompletamente solidificadas. Estimativas de temperaturas sincinemáticas realizadas a partir do geotermômetro TitaniQ (titânio-em-quartzo) indicam que a temperatura mínima para a cristalização de cristais de quartzo é ~750°C. Tais temperaturas combinadas com composição química de leucossomas dos anatexitos sugerem que a viscosidade das rochas crustais foi reduzida para pelo menos 108 Pa s. Baixo valor de viscosidade associado às evidências de campo e de micro-estruturas são consistentes com a geração de no mínimo 30% de volume de magma durante a orogênese. Grandes quantidades de magma promovem um drástico enfraquecimento da resistência mecânica das rochas à deformação, e atestam que a crosta anatética do extremo leste da Faixa Araçuaí representa um análogo de litosferas quentes (hot orogen), tal como a Himalaiana. Investigação mineralógica detalhada permitiu caracterizar um comportamento dominantemente paramagnético para os anatexitos e ferromagnético para os granulitos. Medidas de orientação preferencial cristalográfica (OPC) a partir da técnica de EBSD (electron backscatter diffraction) revelam que a foliação magnética surge, sobretudo, a partir da orientação preferencial dos eixos [001] da biotita orientados perpendicularmente ao plano de fluxo. Contudo, dada a fraca anisotropia linear desse mineral, apenas uma secundária contribuição de sua subtrama foi observada para a origem da lineação magnética (k1). A correspondência entre os eixos [001] de feldspatos e k1 ocorre devido a OPC de pequenas inclusões de ilmenita que imitam a OPC de seus minerais hospedeiros. Correlação entre k1 da Anisotropia de Remanência Anistéretica (ARA) e k1 da Anisotropia de Suscetibilidade Magnética (ASM) demonstra que, na escala do espécime, a lineação magnética tem uma contribuição da anisotropia dos minerais ferromagnéticos. Assim sendo, a lineação magnética nos anatexitos é o resultado da combinação da trama cristalográfica de feldspatos e de biotita com o alinhamento preferencial de grãos ferromagnéticos. Medidas de ASM realizadas para recuperar a trama mineral e investigar o fluxo nos migmatitos revela um padrão de deformação complexo, no qual, em função das direções de lineação, especialmente, é possível caracterizar três setores estruturais. A porção norte (região estrutural 1) com foliações dominantemente sub-horizontais e lineação fortemente orientada na direção NW-SE representa uma região de escape tectônico que ocorre através de um fluxo horizontal de canal (channel flow). Fluxos de canais possivelmente resultam da atuação de forças gravitacionais (gravity-driven flow). O setor sul (regiões estruturais 2 e 3) com variadas direções de foliação (NE-SW, E-W e NW-SE) e lineações com caimentos para Norte e Oeste, provavelmente refletem um regime de fluxo influenciado, sobretudo, pela tectônica de convergência E-W (collision-driven flow). Ambos os setores sugerem que na escala regional o fluxo crustal registrado pelos migmatitos resulta de um regime de deformação que envolve forças gravitacionais, devido a carga topográfica da crosta superior sobreposta à crosta intermediária parcialmente fundida, com viscosidade baixa, e forças tectônicas, associadas à colisão entre os continentes Sul-Americano e Africano. / The Araçuaí belt was formed by the collision between South American and African protocontinents during the Neoproterozoic. Its eastern part consists of an extensive migmatitic area (~300 km long x 50-100 km wide) where crop out anatexites and leucogranites (Carlos Chagas unit), migmatitic kinzigites and granulites that probably are the record of a widespread partial melting of the middle to lower crust. Field observations associated with microstructural evidences indicate that the deformation occurred when the rocks were incompletely solidified. Synkinematic temperature estimates realized using the TitaniQ (titaniun-in-quartz) geotermomether suggest that the minimum temperature for the quartz crystallization is ~750°C. Such temperatures combined with bulk rock composition of leucosome in the anatexites suggest that the viscosity of crustal rocks was dropped to at least 108 Pa s. Low viscosity values associated with field and microstructural evidences are consistent with the generation of at least 30% volume of melt during the orogeny. The presence of large volumes of melt promotes a drastic weakening of the mechanical strength of rocks and suggests that the anatectic crust of the eastern Araçuaí belt represents an analogue of present day hot orogen such the Himalayas. Detailed mineralogy investigation permitted to characterize the paramagnetic behaviour of the anatexites and the ferromagnetic behaviour of the granulites. Crystallographic preferred orientation (CPO) measurements using the EBSD (Electron Backscatter Diffraction) technique reveal that the magnetic foliation results from the preferred orientation of the biotite [001] oriented normal to the flow plane. However, given the feeble linear anisotropy of this mineral, only a subsidiary contribution of its subfabric to the origin of the magnetic lineation (k1) was observed. Correspondence between [001] of feldspars and k1 is due to the CPO of small inclusions of ilmenite that mimic the CPO of their host minerals. Correlation between k1 of the Anisotropy of Anhysteretic Remanent Magnetization (AARM) and k1 of the Anisotropy of Magnetic Susceptibility (AMS) demonstrate that, at the specimen scale, the magnetic lineation has a contribution of the anisotropy of the ferromagnetic minerals. AMS measurements realized to recover the mineral fabric and investigate the migmatitic flow field revealed a complex strain pattern in which, considering the lineation trends, especially, it is possible to characterize three structural sectors. The north region (structural sector 1) with foliations dominantly sub-horizontal and lineation trending NW-SE is interpreted as a region of tectonic escape that may represent a horizontal channel flow. This oblique tectonic escape probably results from gravity forces (gravity-driven flow). The Southern region (structural sectors 2 and 3) with variable trending foliations (NE-SW, E-W and NW-SE) and lineation plunging to North and West, probably reflect a flow regime dominantly influenced by the E-W convergence of the African and South-American continents (collision-driven flow). Altogether, the characteristics of the various domains suggest that the deformation of the partially molten middle crust of the Araçuaí belt was the result of the combination of gravity forces due to the topographic load and tectonic forces due to the convergence between the African and South-American continents.
109

Vliv mikrostruktury na hodnoty KV mikrolegované oceli 694F60 / The influence of microstructure on the KV values of microalloyed steel 694F60

Abaidullin, Ilgiz January 2018 (has links)
The subject of this master’s thesis was to find the causes of impact toughness scattering of forgings of the test disk with dimension range of 540 – 170 mm. The experimental samples were developed from steel A694 F60. To reach the main aim light microscopy, electron microscopy, EBSD technique, fractographic analysis and hardness measurement HV10 were utilized.
110

Evaluation of crop development stages with TerraSAR-X backscatter signatures (2010-12) by using Growing Degree Days

Ishaq, Atif, Pasternak, René, Wessollek, Christine 13 August 2019 (has links)
TerraSAR-X images have been tested for agricultural fields of corn and wheat. The main purpose was to evaluate the impact of daily temperatures in crop development to optimize climate induced factors on the plant growth anomalies. The results are completed by utilizing Geographic Information Science, e.g. tools of ArcMap 10.3.1 and databases of ground truth and meteorological information. Synthetic Aperture Radar (SAR) images from German Aerospace Center (DLR) are acquired and the field survey datasets are sampled, each per month for three years (2010-2012) but only for the crop seasons (April-October). Correlation between SAR images and farmland anomalies is investigated in accordance with daily heat accumulations and a comparison of the three years’ SAR backscatter signatures is explained for corn and wheat. Finding the influence of daily temperatures on crops and hence on the TerraSAR-X backscatter is developed by Growing Degree Days (GDD) which appears to be the most suitable parameter for this purpose. Observation of GDD permits that the coolest year was 2010, either rest of the years were warmer and GDD accumulated in 2011 was higher as compared to that of 2012 in the first half of the year, however 2012 had rather more heat accumulation in the second half of the year. SAR backscatter from farmland depicts the crop development stages which depend upon the time when satellite captures data during the crop season. It varies with different development stages of crop plants. Backscatter of each development stage changes as the roughness and the moisture content (dielectric property) of the plants changes and local temperature directly impacts crop growth and hence the development stages.

Page generated in 0.0459 seconds