Spelling suggestions: "subject:"backing""
41 |
Spectral inference methods on sparse graphs : theory and applications / Méthodes spectrales d'inférence sur des graphes parcimonieux : théorie et applicationsSaade, Alaa 03 October 2016 (has links)
Face au déluge actuel de données principalement non structurées, les graphes ont démontré, dans une variété de domaines scientifiques, leur importance croissante comme language abstrait pour décrire des interactions complexes entre des objets complexes. L’un des principaux défis posés par l’étude de ces réseaux est l’inférence de propriétés macroscopiques à grande échelle, affectant un grand nombre d’objets ou d’agents, sur la seule base des interactions microscopiquesqu’entretiennent leurs constituants élémentaires. La physique statistique, créée précisément dans le but d’obtenir les lois macroscopiques de la thermodynamique à partir d’un modèle idéal de particules en interaction, fournit une intuition décisive dans l’étude des réseaux complexes.Dans cette thèse, nous utilisons des méthodes issues de la physique statistique des systèmes désordonnés pour mettre au point et analyser de nouveaux algorithmes d’inférence sur les graphes. Nous nous concentrons sur les méthodes spectrales, utilisant certains vecteurs propres de matrices bien choisies, et sur les graphes parcimonieux, qui contiennent une faible quantité d’information. Nous développons une théorie originale de l’inférence spectrale, fondée sur une relaxation de l’optimisation de certaines énergies libres en champ moyen. Notre approche est donc entièrement probabiliste, et diffère considérablement des motivations plus classiques fondées sur l’optimisation d’une fonction de coût. Nous illustrons l’efficacité de notre approchesur différents problèmes, dont la détection de communautés, la classification non supervisée à partir de similarités mesurées aléatoirement, et la complétion de matrices. / In an era of unprecedented deluge of (mostly unstructured) data, graphs are proving more and more useful, across the sciences, as a flexible abstraction to capture complex relationships between complex objects. One of the main challenges arising in the study of such networks is the inference of macroscopic, large-scale properties affecting a large number of objects, based solely on he microscopic interactions between their elementary constituents. Statistical physics, precisely created to recover the macroscopic laws of thermodynamics from an idealized model of interacting particles, provides significant insight to tackle such complex networks.In this dissertation, we use methods derived from the statistical physics of disordered systems to design and study new algorithms for inference on graphs. Our focus is on spectral methods, based on certain eigenvectors of carefully chosen matrices, and sparse graphs, containing only a small amount of information. We develop an original theory of spectral inference based on a relaxation of various meanfield free energy optimizations. Our approach is therefore fully probabilistic, and contrasts with more traditional motivations based on the optimization of a cost function. We illustrate the efficiency of our approach on various problems, including community detection, randomized similarity-based clustering, and matrix completion.
|
42 |
Sur deux problèmes d’apprentissage automatique : la détection de communautés et l’appariement adaptatif / On two problems in machine learning : community detection and adaptive matchingGulikers, Lennart 13 November 2017 (has links)
Dans cette thèse, nous étudions deux problèmes d'apprentissage automatique : (I) la détection des communautés et (II) l'appariement adaptatif. I) Il est bien connu que beaucoup de réseaux ont une structure en communautés. La détection de ces communautés nous aide à comprendre et exploiter des réseaux de tout genre. Cette thèse considère principalement la détection des communautés par des méthodes spectrales utilisant des vecteurs propres associés à des matrices choisiesavec soin. Nous faisons une analyse de leur performance sur des graphes artificiels. Au lieu du modèle classique connu sous le nom de « Stochastic Block Model » (dans lequel les degrés sont homogènes) nous considérons un modèle où les degrés sont plus variables : le « Degree-Corrected Stochastic Block Model » (DC-SBM). Dans ce modèle les degrés de tous les nœuds sont pondérés - ce qui permet de générer des suites des degrés hétérogènes. Nous étudions ce modèle dans deux régimes: le régime dense et le régime « épars », ou « dilué ». Dans le régime dense, nous prouvons qu'un algorithme basé sur une matrice d'adjacence normalisée réussit à classifier correctement tous les nœuds sauf une fraction négligeable. Dans le régime épars il existe un seuil en termes de paramètres du modèle en-dessous lequel n'importe quel algorithme échoue par manque d'information. En revanche, nous prouvons qu'un algorithme utilisant la matrice « non-backtracking » réussit jusqu'au seuil - cette méthode est donc très robuste. Pour montrer cela nous caractérisons le spectre des graphes qui sont générés selon un DC-SBM dans son régime épars. Nous concluons cette partie par des tests sur des réseaux sociaux. II) Les marchés d'intermédiation en ligne tels que des plateformes de Question-Réponse et des plateformes de recrutement nécessitent un appariement basé sur une information incomplète des deux parties. Nous développons un modèle de système d'appariement entre tâches et serveurs représentant le comportement de telles plateformes. Pour ce modèle nous donnons une condition nécessaire et suffisante pour que le système puisse gérer un certain flux de tâches. Nous introduisons également une politique de « back-pressure » sous lequel le débit gérable par le système est maximal. Nous prouvons que cette politique atteint un débit strictement plus grand qu'une politique naturelle « gloutonne ». Nous concluons en validant nos résultats théoriques avec des simulations entrainées par des données de la plateforme Stack-Overflow. / In this thesis, we study two problems of machine learning: (I) community detection and (II) adaptive matching. I) It is well-known that many networks exhibit a community structure. Finding those communities helps us understand and exploit general networks. In this thesis we focus on community detection using so-called spectral methods based on the eigenvectors of carefully chosen matrices. We analyse their performance on artificially generated benchmark graphs. Instead of the classical Stochastic Block Model (which does not allow for much degree-heterogeneity), we consider a Degree-Corrected Stochastic Block Model (DC-SBM) with weighted vertices, that is able to generate a wide class of degree sequences. We consider this model in both a dense and sparse regime. In the dense regime, we show that an algorithm based on a suitably normalized adjacency matrix correctly classifies all but a vanishing fraction of the nodes. In the sparse regime, we show that the availability of only a small amount of information entails the existence of an information-theoretic threshold below which no algorithm performs better than random guess. On the positive side, we show that an algorithm based on the non-backtracking matrix works all the way down to the detectability threshold in the sparse regime, showing the robustness of the algorithm. This follows after a precise characterization of the non-backtracking spectrum of sparse DC-SBM's. We further perform tests on well-known real networks. II) Online two-sided matching markets such as Q&A forums and online labour platforms critically rely on the ability to propose adequate matches based on imperfect knowledge of the two parties to be matched. We develop a model of a task / server matching system for (efficient) platform operation in the presence of such uncertainty. For this model, we give a necessary and sufficient condition for an incoming stream of tasks to be manageable by the system. We further identify a so-called back-pressure policy under which the throughput that the system can handle is optimized. We show that this policy achieves strictly larger throughput than a natural greedy policy. Finally, we validate our model and confirm our theoretical findings with experiments based on user-contributed content on an online platform.
|
43 |
Interaktivní interpret jazyka C / C Language Interactive InterpreterBlažek, Martin January 2008 (has links)
This master's thesis deals with implementation of ISO C99 language interpreter. The goal of this thesis is to provide support of education in C language programming and fast algorithm prototyping. It enables students to create own C programs and to experiment with language constructions without compiling. User interface includes editor and simple debugger. The interpreter is implemented in a novel grammar development environment written in Java language - ANTLRWorks which includes ANTLR language tool.
|
44 |
Hardwarová akcelerace algoritmu pro hledání podobnosti dvou DNA řetězců / Hardware Acceleration of Algorithms for Approximate String MatchingNosek, Ondřej January 2007 (has links)
Methods for aproximate string matching of various sequences used in bioinformatics are crucial part of development in this branch. Tasks are of very large time complexity and therefore we want create a hardware platform for acceleration of these computations. Goal of this work is to design a generalized architecture based on FPGA technology, which can work with various types of sequences. Designed acceleration card will use especially dynamic algorithms like Needleman-Wunsch and Smith-Waterman.
|
Page generated in 0.0511 seconds