• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 155
  • 12
  • 10
  • 10
  • 8
  • 7
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 242
  • 74
  • 58
  • 42
  • 40
  • 36
  • 35
  • 32
  • 31
  • 30
  • 27
  • 27
  • 26
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Electrochemical Materials Science: Calculation vs. Experiment as Predictive Tools in Tailoring Intrinsically Conducting Polythiophenes

Alhalasah, Wasim 19 March 2007 (has links) (PDF)
Eine Reihe 3-(p-X-phenyl)-Thiophenmonomeren (X = -H, -CH3, -OCH3, -COCH3, -COOC2H5, -NO2) wurde elektrochemisch polymerisiert, um Filme zu erhalten, die umkehrbar reduziert und oxidiert werden konnten (n-und p-dotiert wurden). Die Oxidationspotentiale der Monomere und die formalen Potentiale der n und p-Dotierprozesse der Polymere wurden mit Resonanz- und induktiven Effekten der Substituenten (Hammett konstanten) am Phenylring sowie semiempirisch errechneten Bildungswärmen der Monomereradikalkationen korreliert. Außerdem wurden die Oxidationspotentiale mit den Ionisierungspotentialen der Monomere verglichen, die über die Dichtefunktionialtheorie (DFT) errechnet wurden, die der Energie für das Erzeugen der Radikalkationen entsprechen. Um theoretische Grundlagen für die Einstufen-Bildung regioregulär -konjungierter Oligo- und Polythiophene zu erhalten, wurden die elektronischen Zustände von 3-Phenylthiophen-Derivaten anhand von Molekülorbitalberechnungen auf Grundlage der Dichtefunktionaltheorie mit Becke’s Drei-Parameter-Funktion (B3LYP), sowie mit den Basissätzen 6-31G(d) und 3-21G(d) erklärt. Die Reaktivität der Verknüpfung von mono- und oligo-3-Phenylthiophenen wurde von den berechneten ungepaarten Elektronenspindichten der entsprechenden Radikal-Anionen abgeleitet. Die Ionisierungspotentiale, die den Energien zur Erzeugung der Radikal-Anionen während der Oxidation entsprechen, wurden abgeschätzt. Die aus den 3-Phenylthiophenen entstandenen regioselektiven Hauptprodukte können gut durch die Größe der Spindichten erklärt werden. Da die Verknüpfungsreaktion an der zwei-Position des Thiophnrings (C-2) sterisch durch die Phenylgruppe und den Thiophenring gehindert ist, startet die Initiierung der 3-Phenylthiophene über die Bildung eines Kopf-Schwanz-Dimers. Folglich spielt das Kopf-Schwanz-Dimer eine wichtige Rolle bei den Wachstumsreaktionen der 3-Phenylthiophene. Die Ursache dafür liegt darin, dass das Kopf-Schwanz-Dimer in 5-Position die höchste Spin-Dichte besitzt und die Wahrscheinlichkeit einer Kopf-Kopf-Verknüpfung aufgrund der sterischen Hinderung zwischen dem Thiophenring und der Phenylgruppe gering ist. Polymerfilme von 3-Phenylthiophenderivaten, die durch elektrochemische Polymerisation synthetisiert wurden, sind in situ und ex situ durch Resonanz-Raman-Spektroskopie bei verschiedenen Anregungswellenlängen, sowie durch in situ und ex situ UV-Vis Spektroskopie analysiert wurden. Die Entwicklung der in situ UV-Vis-Spektren der Polymer von 3-Phenylthiophene nach der Dotierung wird durch ähnliche Eigenschaften gekennzeichnet, wie für viele Polythiophene mit einem hohen Grad der Konjugation beobachtet. Während der schrittweisen Oxidation der Poly-3-phenylthiophen Filme verringert sich die Intensität der Absorption wegen des Überganges bei 450-566 nm und ein neues ausgedehntes Absorptionsband, das auf (bi)polaron Zustände bezogen wird erscheint bei ungefähr 730-890 nm. Andererseits wird während der Oxidation (p-Dotierung) des Poly3-phenylthiophen Filmes eine blau/hypsochrome Verschiebung für beide Absorptionsbänder beobachtet . Es wird durch die Tatsache erklärt, dass ein Polymer eine Verteilung der Kettenlängen enthält und die längste Polymer kette (dessen Absorption bei niedriger Energie auftritt), bei niedrigeren Potentialen zu oxidieren beginnt. Die elektrochemischen Bandlücken der Derivate von 3-Phenylthiophen sind durch zyklische Voltametrie gemessen worden. Der Effekt der Substituenten auf den Oxidations-/Reduktions- potentiale wird besprochen. Bei Bandlücken, die durch zyklische Voltammetrie erhalten wurden, hat sich herausgestellt, dass sie im Allgemeinen höher liegen als optische Bandlücken. Erste Resultate der in situ Resonanz-Raman-Spektroskopie, von dem elektrochemisch erzeugten Polymerderivate von 3-Phenylthiophen Filmen auf einer Platinelektrode, in einer organischen Elektrolytlösung, werden berichtet. Beobachtete Raman Banden werden zugewiesen; gegründet auf diesen Resultaten werden die zuvor angenommenen molekularen Strukturen diskutiert. / A series of 3-(p-X-phenyl) thiophene monomers (X= –H, –CH3, –OCH3, –COCH3, –COOC2H5, –NO2) was electrochemically polymerized to furnish polymer films that could be reversibly reduced and oxidized (n- and p-doped). The oxidation potentials of the monomers and formal potentials of the n- and p-doping processes of polymers were correlated with resonance and inductive effects (Hammett constants) of the substituents on the phenyl ring as well as the semiempirically calculated heats of formation of the monomer radical cations. Moreover, the oxidation potentials of the monomers were correlated with the ionization potentials of the monomers calculated via density functional theory (DFT), which correspond to the energies for generating radical cations during oxidative processes. For obtaining a theoretical basis for the one-step formation of regioregular –conjugated oligo-and polythiophenes, the electronic states of 3-phenylthiophene derivatives were elucidated by molecular orbital calculations using density functional theory with the Becke-type three parameters functional (B3LYP), the 6-31G(d), and 3-21G(d) basis sets. The reactivity for coupling reaction of mono- and oligo-3-phenylthiophenes are inferred from the calculated unpaired electron spin densities of the respective radical cations, and the ionization potentials which correspond to the energies for generating radical cations during oxidative processes were estimated. The major regioselective products of the oligomerization of 3-phenylthiophene can be well understood in terms of the magnitude of spin densities. Since the steric hindrance between the phenyl group and thiophene ring interferes with the coupling reaction occurring between 2-postions (C–2) of thiophene rings, the initiating reaction of 3-phenylthiophene is generaton of a head-to-tail (HT) dimer. Thus, the head-to-tail (HT) dimer plays an important role in the propagation reactions of 3-phenylthiophene. This originates from the highest spin density at the 5- position of the HT dimer and low probability of the HH coupling due to the steric hindrance between thiophene ring and phenyl group. Polymer films of the 3-phenylthiophene derivatives prepared by electrochemical polymerization were analyzed, in situ and ex situ, with resonance Raman spectroscopy using several excitation wavelengths as well as in situ and ex situ UV-Vis-spectroscopy. The evolution of the in situ UV-Vis-spectra of poly 3-phenylthiophene derivatives upon doping is characterized by similar features as observed for many polythiophenes with high degree of conjugation. During stepwise oxidation of the poly-3-phenylthiophene films the intensity of the absorption due to the transition around 450–566 nm decreases and a new broad absorption band related to (bi)polaron states appears around 730-890 nm. On the other hand, during the oxidation (p-doping) of the poly-3-phenylthiophene films a blue/hypsochromic shift is observed for both absorption bands. It is explained by the fact that a polymer contains a distribution of chain lengths, and the longest polymer chains (the absorption of which occurs at lower energies) start to oxidize at lower potentials. The electrochemical bandgaps of 3-phenylthiophene derivatives have been measured by cyclic voltammetry. The effect of substituents on the oxidation / reduction potentials is discussed. Bandgaps obtained by cyclic voltammetry have been found to be in general higher than optical bandgaps. Preliminary results of in situ resonance Raman spectroscopy of electrochemically generated poly-3-phenylthiophene derivatives films on a platinum electrode exposed to an organic electrolyte solution are reported. Observed Raman bands are assigned; based on these results previously suggested molecular structures are discussed.
82

Novel Film Formation Pathways for Cu2ZnSnSe4 for Solar Cell Applications

Bendapudi, Sree Satya Kanth 01 January 2011 (has links)
Because of the anticipated high demand for Indium, ongoing growth of CIGS technology may be limited. Kesterite materials, which replace In with a Zn/Sn couple, are thought to be a solution to this issue. However, efficiencies are still below the 10% level, and these materials are proving to be complex. Even determination of the bandgap is not settled because of the occurrence of secondary phases. We use a film growth process, 2SSS, which we believe helps control the formation of secondary phases. Under the right growth conditions we find 1/1 Zn/Sn ratios and XRD signatures for Cu2ZnSnSe4 with no evidence of secondary phases. The optical absorption profile of our films is also a good match to the CIS profile even for films annealed at 500° C. We see no evidence of phase separation. The effect of intentional variation of the Zn/Sn ratio on material and device properties is also presented.
83

Gallium nitride sensors for hydrogen/nitrogen and hydrogen/carbon monoxide gas mixtures

Monteparo, Christopher Nicholas 01 June 2009 (has links)
As hydrogen is increasingly used as an energy carrier, gas sensors that can operate at high temperatures and in harsh environments are needed for fuel cell, aerospace, and automotive applications. The high temperature Fischer-Tropsch process also uses mixtures of hydrogen and carbon monoxide to generate synthetic fuels from non-fossil precursors. As the Fischer-Tropsch process depends upon particular gas mixtures to generate various fuels, a sensor which can determine the proper ratio of reactants is needed. To this end, gallium nitride (GaN) has been used to fabricate a resistive gas sensor. GaN is a suitable semiconductor to be used in hydrogen because of a wide, direct bandgap and greater stability than many other semiconductors. Additionally, resistive sensors offer several advantages in design compared to other types of sensors. Response time of resistive sensors is faster than those of other semiconductor sensors because catalytic and diffusion steps are not part of the response mechanism. Instead, a thermal detection mechanism is employed in resistive sensors. In this work, sensor response to changes in hydrogen concentration in nitrogen was measured at 200°C and 300°C. Sensor response was measured as change in current from a reference response to pure nitrogen at each temperature under a constant 2.5 V bias. Isothermal operation was achieved by controlling sensor temperature and pre-heating gas mixtures. Sensitivity to concentration increased upon an increase in temperature. Additionally, sensor response to concentration changes of H2 in CO at 50 °C was demonstrated. Sensors show similar responses to nitrogen and carbon monoxide mixtures, which have similar thermal properties. Using the thermal detection mechanism of the sensors, a correlation was shown between sensor response and a gas mixture thermal conductivity.
84

Wave Propagation in Nonlinear Systems of Coupled Oscillators

Bernard, Brian Patrick January 2014 (has links)
<p>Mechanical oscillators form the primary structure of a wide variety of devices including energy harvesters and vibration absorbers, and also have parallel systems in electrical fields for signal processing. In the area of wave propagation, recent study in periodic chains have focused on active tuning methods to control bandgap regions, bands in the frequency response in which no propagating wave modes exist. In energy harvesting, several coupled systems have been proposed to enhance the peak power or bandwidth of a single harvester through arrays or dynamic magnification. Though there are applications in several fields, the work in this dissertation can all fit into the category of coupled non-linear oscillators. In each sub-field, this study demonstrates means to advance state of the art techniques by adding nonlinearity to a coupled system of linear oscillators, or by adding a coupled device to a nonlinear oscillator.</p><p>The first part of this dissertation develops the analytical methods for studying wave propagation in nonlinear systems. A framework for studying rotational systems is presented and used to design an testbed for wave propagation experiments using a chain of axially aligned pendulums. Standard analytical methods are also adapted to allow uncertainty analysis techniques to provide insight into the relative impact of variations in design parameters. Most analytical insight in these systems is derived from a linearlized model and assumes low amplitude oscillations. Additional study on the nonlinear system is performed to analyze the types of deviations from this behavior that would be expected as amplitudes increase and nonlinear effects become more prominent.</p><p>The second part of this dissertation describes and demonstrates the first means of passive control of bandgap regions in a periodic structure. By imposing an asymmetrical bistability to an oscillator in each unit cell, it is analytically shown that each potential well has different wave propagation behaviors. Experimental demonstrations are also provided to confirm the simulated results.</p><p>The final section performs analytical and numerical analysis of a new system design to improve the performance of a nonlinear energy harvester by adding an excited dynamic magnifier. It is shown that this addition results in higher peak power and wider bandwidth than the uncoupled harvester. Unlike standard dynamic magnifiers, this performance does not come at the expense of power efficiency, and unlike harvester arrays, does not require the added cost of multiple energy harvesters.</p> / Dissertation
85

A low-voltage, low-power CMOS bandgap reference

Murugeshappa, Ravi Gourapura 19 November 2010 (has links)
Bandgap reference circuits are used in a host of analog, digital, and mixed-signal systems to establish an accurate voltage reference for the entire IC. The most used CMOS implementation for voltage references is the bandgap circuit due to its high predictability, and low dependence of the supply voltage and temperature of operation. This work studies a CMOS implementation of a resistor-less bandgap reference, which consumes low power. The most relevant and traditional approaches usually employed to implement bandgap voltage references are investigated. The impact of process, power-supply, load and temperature variations has been analyzed and simulated. The functionality of critical components of the circuit has been verified through chip implementation. / text
86

HIGH-PERFORMANCE PERIODIC ANTENNAS WITH HIGH ASPECT RATIO VERTICAL FEATURES AND LARGE INTERCELL CAPACITANCES FOR MICROWAVE APPLICATIONS

2014 September 1900 (has links)
Modern communications systems are evolving rapidly to address the demand for data exchange, a fact which imposes stringent requirements on the design process of their RF and antenna front-ends. The most crucial pressure on the antenna front-end is the need for miniaturized design solutions while maintaining the desired radiation performance. To satisfy this need, this thesis presents innovative types of periodic antennas, including electromagnetic bandgap (EBG) antennas, which are distinguished in two respects. First, the periodic cells contain thick metal traces, contrary to the conventional thin-trace cells. Second, such thick traces contain very narrow gaps with very tall sidewalls, referred to as high aspect ratio (HAR) gaps. When such cells are used in the structure of the proposed periodic antennas, the high capacitance of HAR gaps decreases the resonance frequency, mitigates conduction loss, and thus, yields considerably small high efficiency antennas. For instance, one of the sample antenna designs with only two EBG cells offers a very small XYZ volume of 0.25λ×0.28λ×0.037λ with efficiency of 83%. Also, a circularly polarized HAR EBG antenna is presented which has a footprint as small as 0.26λ×0.29λ and efficiency as high as 94%. The main analysis method developed in this thesis is a combination of numerical and mathematical analyses and is referred to as HFSS/Bloch method. The numerical part of this method is conducted using a High Frequency Structure Simulator (HFSS), and the mathematical part is based on the classic Bloch theory. The HFSS/Bloch method acts as the mainstay of the thesis and all designs are built upon the insight provided by this method. A circuit model using transmission line (TL) theory is also developed for some of the unit cells and antennas. The HFSS/Bloch perspective results in a HAR EBG TL with radiation properties, a fragment of which (2 to 6 cells) is introduced as a novel antenna, the self-excited EBG resonator antenna (SE-EBG-RA). Open (OC) and short circuited (SC) versions of this antenna are studied and the inherently smaller size of the SC version is demonstrated. Moreover, the possibility of employing the SE-EBG-RA as the element of a series-fed array structure is investigated and some sample high-efficiency, flat array antennas are rendered. A microstrip antenna is also developed, the structure of which is composed of 3×3 unit cells and shows fast-wave behaviors. Most antenna designs are resonant in nature; however, in one case, a low-profile efficient leaky-wave antenna with scanning radiation pattern is proposed. Several antenna prototypes are fabricated and tested to validate the analyses and designs. As the structures are based on tall metal traces, two relevant fabrication methods are considered, including CNC machining and deep X-ray lithography (DXRL). Hands-on experiments provide an outlook of possible future DXRL fabricated SE-EBG-RAs.
87

SINGLE-EVENT EFFECT STUDY ON A DC/DC PWM USING MULTIPLE TESTING METHODOLOGIES

2015 February 1900 (has links)
As the technology advances, the feature size of the modern integrated circuits (ICs) has decreased dramatically to nanometer amplitude. On one hand, the shrink brings benefits, such as high speed and low power consumption per transistor. On the other hand, it poses a threat to the reliable operation of the ICs by the increased radiation sensitivity, such as single event effects (SEEs). For example, in 2010, a commercial-off-the-shelf (COTS) BiCMOS DC/DC pulse width modulator (PWM) IC was observed to be sensitive to neutrons on terrestrial real-time applications, where negative 6-μs glitches were induced by the single event transient (SET) effects. As a result, a project was set up to comprehensively study the failure mechanisms with various test methodologies and to develop SET-tolerant circuits to mitigate the SET sensitivity. First, the pulsed laser technique is adopted to perform the investigation on the SET response of the DC/DC PWM chip. A Ti:Sapphire single photon absorption (SPA) laser with different wavelengths and repetition rates is used as an irradiation source in this study. The sensitive devices in the chip are found to be the bandgap voltage reference circuit thanks to the well-controlled location information of the pulsed laser. The result is verified by comparing with the previous alpha particle and neutron testing data as well as circuit simulation using EDA tools. The root cause for the sensitivity is also acquired by analyzing the circuit. The temperature is also varied to study the effect of the temperature-induced quiescent point shift on the SET sensitivity of the chip. The experimental results show that the quiescent point shifts have different impacts on SET sensitivities due to the different structures and positions of the circuitries. After that, heavy ions, protons, and the pulsed X-ray are used as irradiation sources to further study the SET response of the DC/DC chip. The heavy ion and pulsed laser data are correlated to each other. And the equivalent LETs for laser with wavelengths of 750 nm, 800 nm, 850 nm and 920 nm are acquired. This conclusion can be used to obtain the equivalent heavy ion cross section of any area in a chip by using the pulsed laser technique, which will facilitate the SET testing procedure dramatically. The proton and heavy ion data are also correlated to each other based on a rectangular parallel piped (RPP) model, which gives convenience in Soft Error Rate (SER) estimation. The potential application of pulsed X-ray technique in SET field is also investigated. It is capable of generating similar results with those of heavy ion and pulsed laser testing. Both the advantages and disadvantages of this technique are explained. This provides an alternative choice for the SET testing in the future. Finally, the bandgap voltage reference circuit in the DC/DC PWM is redesigned and fabricated in bulk CMOS 130nm technology and a SET hardened bandgap circuit is proposed and investigated. The CMOS substrate PNP transistor is much less sensitive to SETs than the BiCMOS NPN transistor according to the pulsed laser test results. The reason is analyzed to be the different fabrication processes of the two technologies. The laser test results also indicate that the SET hardened bandgap circuit can mitigate the SET amplitude dramatically, which is consistent with the SPICE simulation results. These researches provide more understandings on the design of SET hardened bandgap voltage reference circuit.
88

Characterization of the Reflection and Dispersion Properties of 'Mushroom'-related Structures and their Applications to Antennas

Raza, Shahzad 15 August 2012 (has links)
The conventional mushroom-like Sievenpiper structure is re-visited in this thesis and a relationship is established between the dispersion and reflection phase characteristics of the structure. It is shown that the reflection phase frequency at which the structure behaves as a Perfect Magnetic Conductor (PMC) can be predicted for varying angles of incidence from the modal distribution in the dispersion diagrams and corresponds to the supported leaky modes within the light cone. A methodology to independently tune the location of the PMC frequency point with respect to the surface wave band-gap location is then presented. The influence of having said PMC frequency point located inside or outside the surface wave band-gap on a dipole radiation pattern is then studied numerically. It is demonstrated that the antenna exhibits a higher gain when the PMC frequency and band-gap coincide versus when they are separated. Two design cases are then presented for when the aforementioned properties coincide and are separated and a gain improvement of 1.2 dB is measured for the former case.
89

Characterization of the Reflection and Dispersion Properties of 'Mushroom'-related Structures and their Applications to Antennas

Raza, Shahzad 15 August 2012 (has links)
The conventional mushroom-like Sievenpiper structure is re-visited in this thesis and a relationship is established between the dispersion and reflection phase characteristics of the structure. It is shown that the reflection phase frequency at which the structure behaves as a Perfect Magnetic Conductor (PMC) can be predicted for varying angles of incidence from the modal distribution in the dispersion diagrams and corresponds to the supported leaky modes within the light cone. A methodology to independently tune the location of the PMC frequency point with respect to the surface wave band-gap location is then presented. The influence of having said PMC frequency point located inside or outside the surface wave band-gap on a dipole radiation pattern is then studied numerically. It is demonstrated that the antenna exhibits a higher gain when the PMC frequency and band-gap coincide versus when they are separated. Two design cases are then presented for when the aforementioned properties coincide and are separated and a gain improvement of 1.2 dB is measured for the former case.
90

Growth and Process-Induced Deep Levels in Wide Bandgap Semiconductor GaN and SiC / 結晶成長及びプロセスにより導入されるワイドバンドギャップ半導体GaN及びSiC中の深い準位

Kanegae, Kazutaka 23 March 2022 (has links)
付記する学位プログラム名: 京都大学卓越大学院プログラム「先端光・電子デバイス創成学」 / 京都大学 / 新制・課程博士 / 博士(工学) / 甲第23909号 / 工博第4996号 / 新制||工||1780(附属図書館) / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 木本 恒暢, 教授 川上 養一, 准教授 安藤 裕一郎 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM

Page generated in 0.0283 seconds