• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 19
  • 8
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 124
  • 57
  • 52
  • 37
  • 22
  • 18
  • 15
  • 15
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Optimisation d’une mission spatiale CMB de 4eme génération / Optimization of a 4th generation CMB space mission

Banerji, Ranajoy 21 September 2017 (has links)
Le rayonnement du Fond Diffus Cosmologique est une source riche et propre d’informations cosmologiques. L’étude du CMB au cours des dernières décennies a conduit à la mise en place d’un modèle standard pour la cosmologie et a permis de mesurer précisément ses principaux paramètres. Il a également transformé le domaine, en le basant davantage sur les données observationnelles et les approches numériques et statistiques.A l’heure actuelle, l’inflation est le principal paradigme décrivant les premiers moments de notre Univers. Elle prédit la génération de fluctuations de la densité de matière primordiale et des ondes gravitationnelles. Le signal de polarisation du CMB porte la signature de ces ondes gravitationnelles sous la forme de modes-B primordiaux. Une future génération de missions spatiale d’observation de la polarisation du CMB est bien adaptée à l’observation de cette signature de l’inflation.Cette thèse se concentre sur l’optimisation d’une future mission spatiale CMB qui observera le signal en modes-B pour atteindre une sensibilité de r = 0,001. Plus précisément, j’étudie la stratégie d’observation et l’impact des effets systématiques sur la qualité de la mesure de polarisation / The Cosmic Microwave Background radiation is a rich and clean source of Cosmological information. Study of the CMB over the past few decades has led to the establishment of a “Standard Model” for Cosmology and constrained many of its principal parameters. It hasalso transformed the field into a highly data-driven domain.Currently, Inflation is the leading paradigm describing the earliest moments of our Universe. It predicts the generation of primordial matter density fluctuations and gravitational waves. The CMB polarisation carries the signature of these gravitational waves in the form of primordial “B-modes”. A future generation of CMB polarisation space mission is well suited to observe this signature of Inflation.This thesis focuses on optimising a future CMB space mission that will observe the B-modesignal for reaching a sensitivity of r = 0.001. Specifically, I study the optimisation of the scanning strategy and the impact of systematics on the quality of polarisation measurement
112

High performance continuous-time filters for information transfer systems

Mohieldin, Ahmed Nader 30 September 2004 (has links)
Vast attention has been paid to active continuous-time filters over the years. Thus as the cheap, readily available integrated circuit OpAmps replaced their discrete circuit versions, it became feasible to consider active-RC filter circuits using large numbers of OpAmps. Similarly the development of integrated operational transconductance amplifier (OTA) led to new filter configurations. This gave rise to OTA-C filters, using only active devices and capacitors, making it more suitable for integration. The demands on filter circuits have become ever more stringent as the world of electronics and communications has advanced. In addition, the continuing increase in the operating frequencies of modern circuits and systems increases the need for active filters that can perform at these higher frequencies; an area where the LC active filter emerges. What mainly limits the performance of an analog circuit are the non-idealities of the used building blocks and the circuit architecture. This research concentrates on the design issues of high frequency continuous-time integrated filters. Several novel circuit building blocks are introduced. A novel pseudo-differential fully balanced fully symmetric CMOS OTA architecture with inherent common-mode detection is proposed. Through judicious arrangement, the common-mode feedback circuit can be economically implemented. On the level of system architectures, a novel filter low-voltage 4th order RF bandpass filter structure based on emulation of two magnetically coupled resonators is presented. A unique feature of the proposed architecture is using electric coupling to emulate the effect of the coupled-inductors, thus providing bandwidth tuning with small passband ripple. As part of a direct conversion dual-mode 802.11b/Bluetooth receiver, a BiCMOS 5th order low-pass channel selection filter is designed. The filter operated from a single 2.5V supply and achieves a 76dB of out-of-band SFDR. A digital automatic tuning system is also implemented to account for process and temperature variations. As part of a Bluetooth transmitter, a low-power quadrature direct digital frequency synthesizer (DDFS) is presented. Piecewise linear approximation is used to avoid using a ROM look-up table to store the sine values in a conventional DDFS. Significant saving in power consumption, due to the elimination of the ROM, renders the design more suitable for portable wireless communication applications.
113

Low-Power Low-Noise CMOS Analog and Mixed-Signal Design towards Epileptic Seizure Detection

Qian, Chengliang 03 October 2013 (has links)
About 50 million people worldwide suffer from epilepsy and one third of them have seizures that are refractory to medication. In the past few decades, deep brain stimulation (DBS) has been explored by researchers and physicians as a promising way to control and treat epileptic seizures. To make the DBS therapy more efficient and effective, the feedback loop for titrating therapy is required. It means the implantable DBS devices should be smart enough to sense the brain signals and then adjust the stimulation parameters adaptively. This research proposes a signal-sensing channel configurable to various neural applications, which is a vital part for a future closed-loop epileptic seizure stimulation system. This doctoral study has two main contributions, 1) a micropower low-noise neural front-end circuit, and 2) a low-power configurable neural recording system for both neural action-potential (AP) and fast-ripple (FR) signals. The neural front end consists of a preamplifier followed by a bandpass filter (BPF). This design focuses on improving the noise-power efficiency of the preamplifier and the power/pole merit of the BPF at ultra-low power consumption. In measurement, the preamplifier exhibits 39.6-dB DC gain, 0.8 Hz to 5.2 kHz of bandwidth (BW), 5.86-μVrms input-referred noise in AP mode, while showing 39.4-dB DC gain, 0.36 Hz to 1.3 kHz of BW, 3.07-μVrms noise in FR mode. The preamplifier achieves noise efficiency factor (NEF) of 2.93 and 3.09 for AP and FR modes, respectively. The preamplifier power consumption is 2.4 μW from 2.8 V for both modes. The 6th-order follow-the-leader feedback elliptic BPF passes FR signals and provides -110 dB/decade attenuation to out-of-band interferers. It consumes 2.1 μW from 2.8 V (or 0.35 μW/pole) and is one of the most power-efficient high-order active filters reported to date. The complete front-end circuit achieves a mid-band gain of 38.5 dB, a BW from 250 to 486 Hz, and a total input-referred noise of 2.48 μVrms while consuming 4.5 μW from the 2.8 V power supply. The front-end NEF achieved is 7.6. The power efficiency of the complete front-end is 0.75 μW/pole. The chip is implemented in a standard 0.6-μm CMOS process with a die area of 0.45 mm^2. The neural recording system incorporates the front-end circuit and a sigma-delta analog-to-digital converter (ADC). The ADC has scalable BW and power consumption for digitizing both AP and FR signals captured by the front end. Various design techniques are applied to the improvement of power and area efficiency for the ADC. At 77-dB dynamic range (DR), the ADC has a peak SNR and SNDR of 75.9 dB and 67 dB, respectively, while consuming 2.75-mW power in AP mode. It achieves 78-dB DR, 76.2-dB peak SNR, 73.2-dB peak SNDR, and 588-μW power consumption in FR mode. Both analog and digital power supply voltages are 2.8 V. The chip is fabricated in a standard 0.6-μm CMOS process. The die size is 11.25 mm^2. The proposed circuits can be extended to a multi-channel system, with the ADC shared by all channels, as the sensing part of a future closed-loop DBS system for the treatment of intractable epilepsy.
114

Passive, active and absorbing frequency selective surfaces for wireless communication applications

Kiani, Ghaffer I (Ghaffer Iqbal) January 2008 (has links)
"March, 2009". / Thesis (PhD)--Macquarie University, Faculty of Science, Dept. of Physics & Engineering, 2008. / Bibliography: p. 145-158. / Introduction -- Frequency selective surfaces -- Absorb/transmit frequency selective surface absorber -- Switchable frequency selective surface for wireless applications -- Energy-saving glass characterisation -- Frequency selective surface solution for energy-saving glass -- Conclusion. / This thesis presents three topics related to frequency selective surfaces (FSSs), namely bsorb/transmit FSSs, active FSSs and passive bandpass FSSs for energy-saving glass used in modern buildings. These three FSSs are unique in their design and functionalities. The absorb/transmit FSS is a novel dual-layer frequency selective surface for 5 GHz WLAN applications. This FSS can stop propagation of specific bands by absorbing as opposed to re ecting, while passing other useful signals. This is in contrast to the conventional Salisbury and Jaumann absorbers, which provide good absorption in the desired band while the out-of-band frequencies are attenuated. The second topic is a single-layer bandpass active FSS that can be switched between ON and OFF states to control the transmission in 2.45 GHz WLAN applications. Previously, researchers have focused on the bandstop and dual-layer versions of the active FSS. This is in contrast to the design presented in this thesis which is single-layer and provides extra advantage in a practical WLAN environment. Also the dc biasing techniques that were used for the active FSS design are easier to implement and provide good frequency stability for different angles of incidence and polarisations in both ON and OFF states. The last topic is on the use of a bandpass FSS in energy-saving glass panels used in building design. The manufacturers of these glass panels apply a very thin metal-oxide coating on one side of the glass panels to provide extra infrared (heat) attenuation. However, due to the presence of the coating, these energy-saving glass panels also attenuate communication signals such as GSM 900, GSM 1800/1900, UMTS and 3G mobile signals etc. This creates a major communication problem when buildings are constructed with windows of this glass. In this thesis, a solution to this problem is presented by designing and etching a cross-dipole bandpass FSS on the coated side of the glass to pass the useful signals while keeping infrared attenuation at an acceptable level. One of the advantages of this FSS design is that measured material values of the metal-oxide coating are used for simulations, which have not been done previously. / Mode of access: World Wide Web. / 166 p. ill. (some col.)
115

Etude de filtres RF planaires miniatures. Amélioration de la réjection hors-bande et accordabilité / Compact RF planar filters-improvement of the out-of-band rejection and tunabiliity

Akra, Mirna 18 March 2014 (has links)
Le but de ce travail était de développer des filtres passe-bande RF dans la technologie de PCB, avec trois objectifs principaux. Le premier objectif était de développer des formules de synthèse tosimplify la procédure de conception du filtre. Le deuxième était de parvenir à un rejet wideout bande sans modifier les caractéristiques de la bande de filtrage. Le troisième objectif est de contrôler la fréquence centrale du filtre en utilisant diode varicap. / The purpose of this work was to develop RF bandpass filters in PCB technology,with three main objectives. The first objective was to develop synthesis formulas tosimplify the design procedure of the filter. The second was to achieve wideout-of-band rejection without modifying the in-band filtering characteristics. Thethird objective was to control the center frequency of the filter by using varactordiode.The bandpass filter topology treated in this thesis is based on Stub-LoadedResonators (SLR). The main features of this filter topology were treated. Equivalentcircuits based on J-inverters and susceptance parameters were derived. Based onthese equivalent circuits, synthesis formulas were developed. Simulations werepresented to validate the synthesis theory. For a proof-of-concept, third orderstripline bandpass filters were designed and fabricated based on this synthesis.Analysis technique using odd- and even- mode was achieved on the SLR. Thusresonance odd- and even-mode conditions were derived. These conditions aim toeasily control the first spurious frequency. Moreover, to go further in improving theout-of-band rejection a new technique, called “U corner structure”, was developedand design rules were derived. Based on these design rules an extended out-of-bandrejection was achieved without any modification in the passband and by maintainingthe compactness of the filter. A first spurious frequency was localized at up to ninetimes the working frequency in the case of the Parallel-coupled Stub-Loadedresonator (PC-SLR) filter. Also, by applying this technique into the classicalparallel-coupled filter the first and second spurious frequencies were rejected. Toaddress the issue of tunable filters, the SLRs were correctly loaded by variablecapacitors (varactor diode). The center frequency of the PC-SLR filter was easilycontrolled by maintaining a large out-of-band rejection.
116

Etude de filtres MMIC hyperfréquences en technologies GaN et AsGa / MMIC Filter Design in GaN and GaAs Technology

Kamoun, Leila 02 December 2014 (has links)
Ces travaux de thèse portent sur l‟étude de filtres « multi-fonctions » dont l‟objectif serait de réduire les dimensions des circuits réalisant les fonctions de filtrage dans les systèmes aéroportés. Ces travaux ont donc conduit à la réalisation de filtres large bande (2 – 18 GHz) réjecteurs développés en technologie MMIC utilisant la filière GaN, ainsi que des filtres large bande développés suivant la filière AsGa en technologie MMIC. Les différents filtres réjecteurs ont été conçus suivant deux principes :- Le premier basé sur une structure à résonateurs à lignes couplées. Les différents prototypes réalisés ont permis de montrer l‟accordabilité en fréquence grâce à une charge variable placée à l‟extrémité non court-circuité de la ligne couplée. Celle-ci peut être réalisée par une diode varactor ou par un transistor froid. Ces prototypes ont également permis de montrer la possibilité de fonctionner suivant un mode passe-tout ou un mode réjecteur par simple polarisation de transistors chargés à l‟extrémité de la ligne couplée.- Le second est basé sur l‟accordabilité de filtres actifs par commutation entre plusieurs canaux à l‟aide d‟une structure distribuée. Un prototype a été développé et réalisé en technologie AsGa. Cette structure permet à la fois une accordabilité en fréquences, ainsi qu‟en largeur de bande passante (par activation de plusieurs canaux de bandes passantes adjacentes), et une adaptation large bande. Cette structure réunit à la fois des fonctions d‟accordabilité en fréquences (entre 8,7 et 15,6 GHz) par polarisation d‟éléments actifs, ceux-ci permettant même d‟obtenir du gain (de l‟ordre de 10 dB). / The aim of this work is to study “multi-functions” filters with an objective to reduce the dimensions of the circuits used for filtering functions in airborne systems. This work allows to obtain wide band notch filters (from 2 to 18 GHz) developed in MMIC technology using theEtude de Filtres MMIC Hyperfréquences en Technologies GaN et AsGa. 152GaN process and wide band filters developed in GaAs technology. The notch filters have been realized with two principles:- The first one based on coupled lines resonators structure. The prototype manufactured allow to validate the frequency tunability thanks to a variable load placed at the end of the coupled line. This can be realized with a varactor diode or with a cold transistor. These prototypes allow also validating the possibility for the circuit to work as an “allpass” filter or as a notch filter by applying a bias voltage on the transistors placed at the end of the coupled line.- The second one is based on the tenability of active filters by commuting between several channels thanks to a distributed structure. A prototype has been developed and manufactured in GaAs technology. This structure allow a frequency tunability with also the possibility to tune the bandwidth (by activating seeral channels with edge bandwidth), and a wide band matching. This structure allows to obtain frequency tunability (between 8.7 and 15.6 GHz) by applying a bias voltage on the active elements which brin gain (around 10 dB).
117

Étude de dispositifs hyperfréquences accordables en technologie microfluidique / Study of tunable microwave devices in microfluidics technology

Diedhiou, Daouda Lamine 20 December 2012 (has links)
La multiplication des besoins des utilisateurs dans le domaine des télécommunications a conduit à une surexploitation du spectre de fréquence. Ceci a engendré la raréfaction des bandes de fréquence conduisant à une nécessité de gestion rationnelle des fréquences. Des contraintes ont été rajoutées aux systèmes d’émission / réception et en particulier sur les filtres pour éviter la saturation des services. Dans cette thèse, les travaux s’orientent surtout vers la conception de résonateurs, de filtres planaires et volumiques (3D) accordables dans le domaine des fréquences millimétriques (>= 30 GHz) en utilisant une nouvelle technique d’accordabilité basée sur des principes microfluidiques. Il s’agit d’une nouvelle approche d’agilité qui consiste à faire circuler de la matière (liquides conducteur, diélectrique ou magnétique) dans un substrat diélectrique par le biais de micro canaux. Le substrat diélectrique utilisé, est une résine SU-8 qui offre une souplesse dans la réalisation des micros canaux et des structures volumiques grâce à son bon facteur de forme (≈ 50%). La circulation de liquides dans le substrat, permet de modifier localement les propriétés électromagnétiques du milieu, ce qui conduit à une modification de la fréquence de résonance du dispositif. / The proliferation of user needs in the field of telecommunications, has led to overexploitation of the frequency spectrum. This led to the scarcity of frequency bands leading to a need for efficient management of frequencies. Constraints were added to the transmitting / receiving systems and in particular on the filters to prevent the saturation of the services. In this thesis, work is mainly oriented towards the design of resonators, planar and volumetric (3D) tunable filters in the field of millimeter wave frequencies (> = 30 GHz) using a new tunable technique which is microfluidic. This is a new approach to agility which consists of circulating the material (conductive, dielectric or magnetic liquids) in a dielectric substrate through micro channels. The dielectric substrate used is a resin SU-8 which provides flexibility in the implementation of microchannels and volumetric structures thanks to its good form factor (≈ 50%). The circulation of fluid in the substrate allows to locally modifying the electromagnetic properties of the medium. This leads to a change in the resonant frequency of the device.
118

Vysokofrekvenční a mezifrekvenční obvody krátkovlnné radiostanice / HF and IF circuits of shortwave radiostation

Šnajdr, Václav January 2009 (has links)
The study, description, design and implementation of selected blocks of multiband shortwave radio station are dealt with in the thesis. Focus is placed on the concept of multiband shortwave radio stations, with an emphasis on high frequency and intermediate frequency circuits. The first chapter is devoted to description of the transceiver block diagram which is designed as superheterodyne. The design of bandpass input filters, intermediate frequency crystal filters and output filters is described. Simulation results and the measured characteristics of the implemented functional blocks are presented. Furthermore, the amplifier circuits which maintain impedance matching of individual blocks are discussed. SSB signal generation in the transmitter part of radio station and final stage power amplification are depicted.
119

Aktivní elektrické filtry na bázi obvodů se spínanými kapacitory / Active electrical filters based on switched-capacitor circuits

Třeček, Stanislav January 2009 (has links)
This thesis deals with concept of universal frequency filter by application of a switched-capacitor functional block. The concept is based on the theory of switched-capacitor circuits and the theory of a design of classical frequency filters. The printed circuit board was designed based on the filter connection developed by using a software Eagle. The filter was implemented as a laboratory product. This product has been revitalized and the frequency response of all types of filters has been measured. The measured parameters were compared with the parameters set out in the technical documentation of functional block.
120

Laboratorní model vírového rychloměru / Laboratory Model of the Vortex Speed Indicator

Kazda, Ondřej January 2009 (has links)
This work is concerned with posibility of measuring a wind flow by Von Karman vortex sheed structure. The bluff body is situated in the way of air flow propagation and consequentally vortexes will be appeared. Important part of speedmeter design is measurment chamber must allow to vortex sheed propagation. The transient and the reciever are situated vertically to propagation of flow.The Ultrasonic carrier is transmitted and modulated by freqency of vortex sheeding in measurment chamber.Demodulator uses PLL to “focusing“ detection of the ultrasonic beam. This can be indicated like lock and unlock phase loop. From known value of sheed frequency can be directly calculated speed of flow.

Page generated in 0.0366 seconds