• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 968
  • 198
  • 175
  • 161
  • 100
  • 58
  • 51
  • 26
  • 21
  • 18
  • 17
  • 17
  • 13
  • 11
  • 9
  • Tagged with
  • 2191
  • 410
  • 377
  • 243
  • 200
  • 188
  • 175
  • 137
  • 131
  • 126
  • 116
  • 110
  • 105
  • 103
  • 101
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
611

Investigation and growth of nickel coatings for electrical contact applications

Fawakhiri, Maria January 2009 (has links)
Nickel based coatings were deposited on copper substrates by two different sputtering techniques from a nickel alloy based target. The substrates used were commercially available copper based substrates for low duty electrical contacts. The coatings were analyzed and evaluated as copper diffusion barriers for electrical contact applications. In addition two types of commercially available electroplated nickel coatings (referred to as type A electroplated coatings and type B electroplated coatings) were characterized for comparison. The Technique I sputtered coatings were deposited using three different substrate bias voltages and two different working gas pressures. The Technique II coatings were deposited using two different substrate bias voltages and two different working gas pressures. All sputtered coatings were deposited at a temperature of 200° C. The quality of the barriers was investigated by analyzing their composition, microstructure, stress, mechanical properties , and surface roughness. The results show that sputtered coatings have polycrystalline structures while the two plated films had (200) orientation and (111) orientation. Both plated coatings contained impurities that originate from chemicals used in the plating baths. The surface of the sputtered coatings reflects the substrate surface, while the electroplated samples on the same substrate (type A coatings) show a smooth mirror like surface and the type B electroplated coatings show a rough surface. Technique II sputtered coatings showed the highest hardness in the amount of 13 GPa, followed by electroplated type A coatings with a hardness of about 9 GPa while the Technique I coatings showed hardness of 6-8 GPa. All sputtered coatings exhibited compressive stress while the electroplated type A coatings exhibited tensile stress of almost twice the magnitude. In this study it is shown that sputtered nickel based coatings sputtered nickel based coatings are a promising more environmental friendly alternative to electroplated nickel coatings.
612

Nanocellulose in pigment coatings : Aspects of barrier properties and printability in offset / Nanocellulosa i mineralbestrykningar : Några aspekter på barriäregenskaper och tryckbarhet i offset

Nygårds, Sofie January 2011 (has links)
Papers are coated in order to improve the properties of the surface, to improve printability and to include new functionalities like barriers properties. Typical coating formulation contains a high number of components, some are made from minerals and others are manufactured from petroleum. The barrier properties of today's paper based packages are plastics and/or aluminum             foil. Environmentally friendly substitutie of these nonrenewable materials are needed.  Nanocellulose is a promising material                 and of a growing interest as an alternative to petroleum-based materials, since nanocellulose films/coatings have been shown to have excellent mechanical and barrier properties.   This project aimed to evaluate nanocellulose in combination with minerals in paper coatings. The project had two approaches. One was to evaluate the barrier properties of MFC coatings with mineral included. The second part was about coatings for           printing matters, and evaluation of the possibility to replace petroleum-based binders in the coating color with MFC. Barrier properties were evaluated by measuring the air permeability of the coatings. The properties of the coating affecting the         printability in offset printing examined was the surface energy, the gloss, the roughness of the coatings, the strength and the offset ink setting.   Carboxymethylated nanocellulose formed denser films and had superior barrier properties compared with enzymatically pretreated nanocellulose. Adding of minerals did not affect the barrier properties of the MFC coatings to a significant extent.         Therefore, minerals cannot be added to enhance the barrier but it can be added to reduce the cost of the coating process without losing any barrier properties.                                 The print quality depends on how the ink interacts with the coating. These coatings did have a relatively high surface energy, which is preferable for printing with waterborne ink. It was also shown that the absorption abilities increased when the amount of MFC was increased. However, offset printing demands high surface strength and addition of MFC in the coating color                     drastically decreased the strength. This means that the coatings produced in this work are not strong enough and thereby not           suitable for offset printing. However other printing technologies put lower demand on surface strength and are still possible.
613

An investigation of protective formulations containing enzyme inhibitors : Model experiments of trypsin

Billinger, Erika January 2012 (has links)
This master thesis considers an investigation of protective formulations (ointment, cream) containing enzyme inhibitors. Model experiments have been made on the enzyme trypsin. It is well accepted that feces and urine are an important causing factor for skin irritation (dermatitis) while using diaper. A protective formulation is a physical barrier that separates the harmful substances from the skin. It can also be an active barrier containing active substances, which can be active both towards the skin, and the substances from feces and urine. By preventing contact from these substances the skin will not be harmed, at least for a period of time. A number of different inhibitors were tested towards trypsin and they all showed good inhibition, two of the inhibitors were selected to be immobilized with the help of NHS-­activated Sepharose. Immobilization of these two inhibitors leads to a lesser extent of the risk of developing allergy and also that the possible toxic effect can be minimized.
614

Efficient Procedure for Valuing American Lookback Put Options

Wang, Xuyan January 2007 (has links)
Lookback option is a well-known path-dependent option where its payoff depends on the historical extremum prices. The thesis focuses on the binomial pricing of the American floating strike lookback put options with payoff at time $t$ (if exercise) characterized by \[ \max_{k=0, \ldots, t} S_k - S_t, \] where $S_t$ denotes the price of the underlying stock at time $t$. Build upon the idea of \hyperlink{RBCV}{Reiner Babbs Cheuk and Vorst} (RBCV, 1992) who proposed a transformed binomial lattice model for efficient pricing of this class of option, this thesis extends and enhances their binomial recursive algorithm by exploiting the additional combinatorial properties of the lattice structure. The proposed algorithm is not only computational efficient but it also significantly reduces the memory constraint. As a result, the proposed algorithm is more than 1000 times faster than the original RBCV algorithm and it can compute a binomial lattice with one million time steps in less than two seconds. This algorithm enables us to extrapolate the limiting (American) option value up to 4 or 5 decimal accuracy in real time.
615

Use of Drains for Passive Control of Flow Through a Permeable Reactive Barrier

McLean, Neil Ross 26 September 2007 (has links)
Abstract Permeable reactive barrier technology is a cost effective means of treating near surface groundwater contaminant plumes. However, current reactive barrier technology lacks the capacity to manipulate flow rates and thus hydraulic retention time (HRT) within the barriers in order to maximize the effectiveness and longevity of the media. This study examines the effectiveness of tile drains as passive controls on the flow rate of ground-water through an existing wood particle media permeable reactive barrier treating agricultural nitrate. The use of upgradient and downgradient tile drains allowed HRT to be increased from 4.5 to 10 days in one trial and then to be decreased from 11.1 to 0.8 days in a second trial. Influent groundwater NO3-N concentrations of ~100 mg/L were attenuated to detection limit (0.02 mg/L) only 12% of the 4 m long barrier with HRTs of 4.5 to 10 days. During the second trial, HRT was decreased to 0.8 days and NO3-N penetrated to the downgradient edge of the PRB at 1.8 mg/L. The behaviour of SO4 in the PRB was also affected by flow rate. SO4 entered the PRB at 60 to 71 mg/L during the first trial. Under a HRT of 10 days it was depleted to detection limit after traveling through only 13% of the barrier. When HRT was decreased to 4.5 days, SO4 was able to penetrate the downgradient edge of the PRB at concentrations from 4 to 6 mg/L. With a 0.8 day HRT SO4 reduction was highly restricted as calculations showed 90% of available carbon in the PRB was being used to reduce NO3-N, compared to 7.5% being used for SO4 reduction at that time. In comparison, at the 10 day HRT, 61% of carbon being used for NO3-N reduction, 8.7% for SO4 reduction, 0.7 for dissolved oxygen and 29% was lost through DOC leaching. These calculations suggest that barrier efficiency can be greatly enhanced by manipulation of HRT through use of tile drains.
616

The Multiple Barrier Approach to Safe Drinking Water for First Nations Communities: A Case Study

Finn, Stuart January 2010 (has links)
The drinking water contamination tragedy in Walkerton, Ontario during the spring of 2000 led to many changes in water management for the province. Among these changes has been the increased use of the multiple barrier approach (MBA) to safe drinking water as the basis of water management for communities throughout Ontario. The MBA is also used in the management of water for First Nations communities throughout Ontario and Canada. Literature on water quality management for First Nations suggests that despite these changes, many communities continue to face challenges for ensuring the safety and quality of their drinking water supplies. Fort William First Nation, Gull Bay First Nation, and Mattagami First Nation, were selected for this study in order to investigate the use of the MBA in these communities. Data was collected using key informant interviews with representatives of institutions that affect water management for the case study communities, direct observations during visits to two of the communities and attendance at a First Nations water policy forum, and through a review of recent reports and publications on safe drinking water for First Nations. The research has provided insight into the challenges that the case study communities face for ensuring safe drinking water under the MBA, as well as opportunities that exist to address those challenges. The findings suggest that the MBA currently does not meet the unique needs of some First Nations communities. They also suggest that specific adaptations of existing water management strategies to the MBA framework may lead to a more effective approach to ensure safe drinking water for First Nations communities. This thesis focuses on several key ways to make these changes: Strengthen public involvement and awareness; Introduce effective legislative and policy frameworks; Encourage research, science and technology for First Nations’ water management; Allocate sufficient financial resources to First Nations to recruit, train and retain qualified water managers and maintain drinking water infrastructure, and; Increase efforts to ensure that water management goals are supported by local and indigenous traditional knowledge, beliefs and perspectives.
617

Adsorption Kinetics of Alkane-thiol Capped Gold Nanoparticles at Liquid-Liquid Interfaces.

Ferdous, Sultana January 2012 (has links)
The pendant drop technique was used to characterize the adsorption behavior of n-dodecane-1-thiol and n-hexane-1-thiol capped gold nanoparticles at the hexane-water interface. The adsorption process was studied by analyzing the dynamic interfacial tension versus nanoparticle concentration, both at early times and at later stages (i.e., immediately after the interface between the fluids is made and once equilibrium has been established). Following free diffusion of nanoparticles from the bulk hexane phase, adsorption leads to ordering and rearrangement of the nanoparticles at the interface and formation of a dense layer. With increasing interfacial coverage, the diffusion-controlled adsorption for the nanoparticles at the interface was found to change to an interaction-controlled assembly and the presence of an adsorption barrier was experimentally verified. At the same bulk concentration, different sizes of n-dodecane-1-thiol nanoparticles showed different absorption behavior at the interface, in agreement with the findings of Kutuzov et al. [1]. The experiments additionally demonstrated the important role played by the capping agent. At the same concentration, gold nanoparticles stabilized by n-hexane-1-thiol exhibited greater surface activity than gold nanoparticles of the same size stabilized by n-dodecane-1-thiol. 1.6 nm, 2.8 nm, and 4.4 nm nanoparticles capped with n-dodecane-1-thiol, and 2.9 nm, and 4.3 nm particles capped with n-hexane-1-thiol were used in this study. The physical size of the gold nanoparticles was determined by TEM image analysis. The pendant drop technique was also used to study the adsorption properties of mixtures of gold nanoparticles at the hexane-water interface; and also investigate the effects of different factors (i.e., temperature, pH or ionic strength) on interfacial tension (IFT). The interfacial properties of mixtures of these nanoparticles, having different sizes and capping agents, were then studied. No interaction was found between the unmixed studied nanoparticles. Using the theory of non-ideal interactions for binary mixtures, the interaction parameters for mixtures of nanoparticles at the interface were determined. The results indicate that nanoparticle concentration of the mixtures has a profound effect on the interfacial nanoparticle composition. A repulsive interaction between nanoparticles of different size and cap was found in the mixtures at the interface layer. The interfacial tension for mixtures was found to be higher than the interfacial tension for non-mixed nanoparticle suspensions. The nanoparticle composition at the interface was found to differ from the composition of nanoparticles in the bulk liquid phase. The activity of unmixed nanoparticles proved to be a poor predictor of the activity of mixtures. It was observed that the most active nanoparticles concentrated at the interface. The effects of temperature, pH and ionic strength concentration on the equilibrium and dynamic IFT of 4.4 nm gold nanoparticles capped with n-dodecane-1-thiol at the hydrocarbon-water interface was studied. The pendant drop technique was also used to study the adsorption properties of these nanoparticles at the hexane-water and nonane-water interface. The addition of NaCl was found to cause a decrease of the equilibrium and dynamic IFT greater than that, which accompanies the adsorption of nanoparticles at the interface in the absence of NaCl. Although IFT values for acidic and neutral conditions were found to be similar, a noticeable decrease in the IFT was found for more basic conditions. Increasing the temperature of the system was found to cause an increase in both dynamic and equilibrium IFT values. The adsorption of functionalized gold nanoparticles at liquid-liquid interfaces is a promising method for self-assembly and the creation of useful nanostructures. These findings contribute to the design of useful supra-colloidal structures by the self-assembly of alkane-thiol capped gold nanoparticles at liquid-liquid interfaces.
618

Upplevda barriärer för clean technology-företag - Fallstudier om kommersialisering av produkter på en internationell marknad för solenergi

Mihai, Gabriela, Macak, Mattias January 2012 (has links)
Overall aim of this master’s thesis is to describe and identify perceived barriers in Swedish businesses within solar energy field and analyze, based on four theoretical viewpoints, how these barriers can be handled. In other words how can the barriers be overcome or eliminated to better succeed in the commercialization process? The method applied is qualitative in which data has been collected through phone interviews originated from seven Cleantech businesses which operate within solar energy. Furthermore this thesis has a descriptive- and an explorative purpose. Empirical findings have showed that barriers depend upon the company itself, but also the community, academic- and governmental institutions. Some businesses do not have an international point of view, instead they have costs aspects in mind. Priorities seem to be a crucial factor when it comes to commercialization. The Swedish government does not contribute enough support to solar energy sector. There is lack of combination in commercialization and technical aspects within the educational system.
619

Important Perception of Market Entry Barriers and Factors in Africa : Case Study on Ethiopia and Egypt

Taffese, Mahlet, Ismail, Mohamed January 2012 (has links)
Globalization, rising affluence in developing and transitional economies, improved infrastructure, and advancements in communication and information technologies have increased the opportunities for marketing services beyond borders. For the last decade African economies has been growing which has created enormous opportunity for international companies. However, foreign companies have been slow to enter into African markets. The purpose of this research is to identify important perception of barriers and factors that affect market entry decision in Africa specifically in Ethiopia and Egypt.This research is based on a qualitative case study and data is collected from primary and secondary data. The primary data are collected from four Swedish micro and small companies. The secondary data collection is based on website, and published material from accredited government, such as UN, Ethiopian investment agency and Swedish government.The major market entry barriers and factors are determined through analysis of these data. The major barriers are cost advantages incumbents, product differentiation, capital requirement, switching cost, access of distribution channel, government policy. The factors are market attractiveness, cultural distance, uncertainty, legal environment, and competition. Market entry decision is dependent on high influential perception of market entry barriers. From this research the important influential perception of barriers and factors that affect market entry decision in Ethiopia and Egypt are government policy, cultural difference, uncertainty, and legal environment. Cost advantage and switching cost are the low influential perception of barriers.
620

Bioremediation of TCE-contaminated groundwater using emulsified carbon-releasing substrate: a pilot-scale study

Liu, Chia-Ting 05 August 2011 (has links)
Soil and groundwater at many existing and former industrial areas and disposal sites is contaminated by halogenated organic compounds that were released into the environment. Halogenated organic compounds are heavier than water. When they are released into the subsurface, they tend to adsorb onto the soils and cause the appearance of DNAPL (dense-non-aqueous phase liquid) pool. Among those halogenated organic compounds, trichloroethylene (TCE), a human carcinogen, is one of the commonly observed contaminants in groundwater. Thus, TCE was used as the target compound in this study. The objective of this study was to develop the emulsified carbon-releasing substrate and apply it as the filling material in the permeable reactive barrier to remediate TCE-contaminated groundwater. In this study, the developed emulsified carbon-releasing substrate contained soybean oil, lactate, biodegradable surfactant (Simple GreenTM and lecithin), and nutrients. Results of emulsion test show that up to 90% of the emulsified carbon-releasing substrate was distributed effectively in the soil pores. The emulsified carbon-releasing substrate was able to provide carbon for the enhancement of in situ anaerobic biodegradation for a long period of time. A pilot-scale study was operated at a TCE-contaminated site located in southern Taiwan. Emulsified carbon-releasing substrate emulsion was pressure-injected into the remediation wells. A total of 120 L of emulsified carbon-releasing substrate was injected into the test site. Based on the groundwater analytical results, dissolved oxygen, oxidation-reduction potential, and sulfate concentrations decreased after injection. However, the anaerobic degradation byproduct, acetic acid, increased after injection. Results also show that the total viable bacteria increased in the upgradient injection (remediation) well. Decrease in TCE concentration (dropped to below 0.01 mg/L) was also observed after substrate injection, and TCE degradation byproducts, cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC) were also observed. Result of microbial analyses show that various TCE-degrading bacteria exist in the groundwater samples including Ralstonia sp., Clostridium sp., Uncultured Burkholderiales bacterium, Hydrogenophaga sp., Acidovorax sp., Zoogloea sp., Hydrocarboniphaga sp., Uncultured Curvibacter sp., Pseudomonas sp., Comamonas sp., Aquabacterium sp., and Variovorax strains. This reveals that the anaerobic dechlorination of TCE is a feasible technology at this site. Slug test result show that only a slight variation in soil permeability of the injection well was observed. This indicates that the substrate injection would not cause clogging of the soil pores. Results from the cost analysis show that the total cost for the test site remediation was approximately USD13,442 per year. This indicates that the developed system has the potential to be developed into an environmentally, economically, and naturally acceptable remedial technology. Knowledge obtained from this study will aid in designing a carbon-released substrate biobarrier system for site remediation.

Page generated in 0.0673 seconds