• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 14
  • 8
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 117
  • 117
  • 76
  • 21
  • 20
  • 19
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Computing Eigenmodes of Elliptic Operators on Manifolds Using Radial Basis Functions

Delengov, Vladimir 01 January 2018 (has links)
In this work, a numerical approach based on meshless methods is proposed to obtain eigenmodes of Laplace-Beltrami operator on manifolds, and its performance is compared against existing alternative methods. Radial Basis Function (RBF)-based methods allow one to obtain interpolation and differentiation matrices easily by using scattered data points. We derive expressions for such matrices for the Laplace-Beltrami operator via so-called Reilly’s formulas and use them to solve the respective eigenvalue problem. Numerical studies of proposed methods are performed in order to demonstrate convergence on simple examples of one-dimensional curves and two-dimensional surfaces.
52

On the Shape Parameter of the MFS-MPS Scheme

Lin, Guo-Hwa 23 August 2010 (has links)
In this paper, we use the newly developed method of particular solution (MPS) and one-stage method of fundamental solution (MFS-MPS) for solving partial differential equation (PDE). In the 1-D Poisson equation, we prove the solution of MFS-MPS is converge to Spectral Collocation Method using Polynomial, and show that the numerical solution similar to those of using the method of particular solution (MPS), Kansa's method, and Spectral Collocation Method using Polynomial (SCMP). In 2-D, we also test these results for the Poisson equation and find the error behaviors.
53

The Use Of Wavelet Type Basis Functions In The Mom Analysis Of Microstrip Structures

Cakir, Emre 01 December 2004 (has links) (PDF)
The Method of Moments (MoM) has been used extensively to solve electromagnetic problems. Its popularity is largely attributed to its adaptability to structures with various shapes and success in predicting the equivalent induced currents accurately. However, due to its dense matrix, especially for large structures, the MoM suffers from long matrix solution time and large storage requirement. In this thesis it is shown that use of wavelet basis functions result in a MoM matrix which is sparser than the one obtained by using traditional basis functions. A new wavelet system, different from the ones found in literature, is proposed. Stabilized Bi-Conjugate Gradient Method which is an iterative matrix solution method is utilized to solve the resulting sparse matrix equation. Both a one-dimensional problem with a microstrip line example and a two-dimensional problem with a rectangular patch antenna example are studied and the results are compared.
54

Mathematical methods in atomic physics / Métodos matemáticos en física atómica / Méthodes mathématiques en physique atomique

Del Punta, Jessica A. 17 March 2017 (has links)
Les problèmes de diffusion de particules, à deux et à trois corps, ont une importance cruciale en physique atomique, car ils servent à décrire différents processus de collisions. Actuellement, le cas de deux corps peut être résolu avec une précision numérique désirée. Les problèmes de diffusion à trois particules chargées sont connus pour être bien plus difficiles mais une déclaration similaire peut être affirmée. L’objectif de ce travail est de contribuer, d’un point de vue analytique, à la compréhension des processus de diffusion Coulombiens à trois corps. Ceci a non seulement un intérêt fondamental, mais est également utile pour mieux maîtriser les approches numériques en cours d’élaboration au sein de la communauté de collisions atomiques. Pour atteindre cet objectif, nous proposons d’approcher la solution du problème avec des développements en séries sur des ensembles de fonctions appropriées et possédant une expression analytique. Nous avons ainsi développé un nombre d’outils mathématiques faisant intervenir des fonctions Coulombiennes, des équations différentielles de second ordre homogènes et non-homogènes, et des fonctions hypergéométriques à une et à deux variables / Two and three-body scattering problems are of crucial relevance in atomic physics as they allow to describe different atomic collision processes. Nowadays, the two-body cases can be solved with any degree of numerical accuracy. Scattering problem involving three charged particles are notoriously difficult but something similar -- though to a lesser extent -- can be stated. The aim of this work is to contribute to the understanding of three-body Coulomb scattering problems from an analytical point of view. This is not only of fundamental interest, it is also useful to better master numerical approaches that are being developed within the collision community. To achieve this aim we propose to approximate scattering solutions with expansions on sets of appropriate functions having closed form. In so doing, we develop a number of related mathematical tools involving Coulomb functions, homogeneous and non-homogeneous second order differential equations, and hypergeometric functions in one and two variables
55

Sistema inteligente para determina??o das dire??es de chegada de m?ltiplos sinais em arranjos de antenas

Dourado J?nior, Osmar de Ara?jo 22 December 2004 (has links)
Made available in DSpace on 2014-12-17T14:56:03Z (GMT). No. of bitstreams: 1 OsmarADJ.pdf: 1159660 bytes, checksum: 65307a903dfe1a1f71297194d1c7e2a5 (MD5) Previous issue date: 2004-12-22 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / This dissertation presents a new proposal for the Direction of Arrival (DOA) detection problem for more than one signal inciding simultaneously on an antennas array with linear or planar geometry by using intelligent algorithms. The DOA estimator is developed by using techniques of Conventional Beam-forming (CBF), Blind Source Separation (BSS), and the neural estimator MRBF (Modular Structure of Radial Basis Functions). The developed MRBF estimator has its capacity extended due to the interaction with the BSS technique. The BSS makes an estimation of the steering vectors of the multiple plane waves that reach the array in the same frequency, that means, obtains to separate mixed signals without information a priori. The technique developed in this work makes possible to identify the multiple sources directions and to identify and to exclude interference sources / Esta disserta??o apresenta uma nova proposta para os problemas de detec??o de dire??o de chegada para mais de um sinal incidindo simultaneamente sobre um arranjo de antenas de geometria planar ou linear empregando algoritmos inteligentes. O estimador de DOA ? desenvolvido utilizando as t?cnicas de Conforma??o de Feixes Digital Convencional (CBF - Conventional Beamforming), de Separa??o Cega de Fontes (BSS {Blind Source Separation) e o estimador neural MRBF (Modular Structure of Radial Basis Functions). O estimador MRBF desenvolvido tem sua capacidade ampliada gra?as ?a intera??o com a t?cnica BSS, a qual faz uma estima??o dos vetores de guiamento das m?ltiplas ondas planas que alcan?am o arranjo na mesma freq??ncia, isto ?, consegue separar sinais misturados sem informa??es a priori. A t?cnica desenvolvida neste trabalho possibilita identificar a dire??o de m?ltiplas fontes e identificar e excluir as fontes de interfer?ncia
56

Desenvolvimento de modelos discretos de Volterra usando funções de Kautz

Rosa, Alex da 18 February 2005 (has links)
Orientadores: Wagner Caradori do Amaral, Ricardo Jose Gabrielli Barreto Campello / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-04T02:57:58Z (GMT). No. of bitstreams: 1 Rosa_Alexda_M.pdf: 896715 bytes, checksum: 1baf3dbaef2a1280f09feabed84d996c (MD5) Previous issue date: 2005 / Resumo: Este trabalho analisa a modelagem de sistemas nao-lineares utilizando modelos de Wiener/Volterra com funcoes ortonormais de Kautz. Os modelos de Volterra sao uma generalizacao do modelo resposta ao impulso para a descricao de sistemas naolineares. Esses modelos necessitam de um numero consideravel de termos para a representacao dos kernels de Volterra. Essa complexidade pode ser reduzida utilizando-se uma representacao do tipo Wiener/Volterra, em que os kernels sao desenvolvidos utilizando uma base de funcoes ortonormais. Sao discutidos aspectos da selecao dos parametros livres (polos) que caracterizam essas funcoes, particularmente a selecao otima dos polos complexos das funcoes de Kautz. Este problema e resolvido minimizando-se o limitante superior do erro que surge a partir da aproximação truncada dos kernels de Volterra usando-se as funcoes de Kautz. Obtem-se a solu¸cao analitica para a escolha otima de um dos parametros relacionados com o polo de Kautz, sendo os resultados validos para modelos Wiener/Volterra de qualquer ordem. Apresentam-se ainda resultados de simulacoes que ilustram a metodologia apresentada, bem como a modelagem de um sistema de levitacao magnetica / Abstract: This work investigates the modelling of nonlinear systems using the Wiener/Volterra models with Kautz orthonormal functions. The Volterra models constitute a generalization of the impulse response model to describe nonlinear systems. Such models require a large number of terms for representing the Volterra kernels. However, this complexity can be reduced by using Wiener/Volterra models, in which the kernels are expanded using an orthonormal basis functions. Aspects about selection of the free parameters (poles) characterizing theses functions are discussed, in particular the optimal selection of the complex poles of the Kautz functions. This problem is solved by minimizing the upper bound of the error arising from the truncated approximation of Volterra kernels using Kautz functions. An analytical solution for the optimal choice of one of the parameters related to the Kautz pole is thus obtained, with the results valid for any-order Wiener/Volterra models. Simulations that illustrate the methodology described above are presented. Also, the modelling of a magnetic levitation system is discussed. / Mestrado / Engenharia / Mestre em Engenharia Elétrica
57

Black-box optimization of simulated light extraction efficiency from quantum dots in pyramidal gallium nitride structures

Olofsson, Karl-Johan January 2019 (has links)
Microsized hexagonal gallium nitride pyramids show promise as next generation Light Emitting Diodes (LEDs) due to certain quantum properties within the pyramids. One metric for evaluating the efficiency of a LED device is by studying its Light Extraction Efficiency (LEE). To calculate the LEE for different pyramid designs, simulations can be performed using the FDTD method. Maximizing the LEE is treated as a black-box optimization problem with an interpolation method that utilizes radial basis functions. A simple heuristic is implemented and tested for various pyramid parameters. The LEE is shown to be highly dependent on the pyramid size, the source position and the polarization. Under certain circumstances, a LEE over 17% is found above the pyramid. The results are however in some situations very sensitive to the simulation parameters, leading to results not converging properly. Establishing convergence for all simulation evaluations must be done with further care. The results imply a high LEE for the pyramids is possible, which motivates the need for further research.
58

Obstacle Description with Radial Basis Functions for Contact Problems in Elasticity

Unger, Roman 03 February 2009 (has links)
In this paper the obstacle description with Radial Basis Functions for contact problems in three dimensional elasticity will be done. A short Introduction of the idea of Radial Basis Functions will be followed by the usage of Radial Basis Functions for approximation of isosurfaces. Then these isosurfaces are used for the obstacle-description in three dimensional elasticity contact problems. In the last part some computational examples will be shown.
59

Metody evoluční optimalizace založené na modelech / Model-based evolutionary optimization methods

Bajer, Lukáš January 2018 (has links)
Model-based black-box optimization is a topic that has been intensively studied both in academia and industry. Especially real-world optimization tasks are often characterized by expensive or time-demanding objective functions for which statistical models can save resources or speed-up the optimization. Each of three parts of the thesis concerns one such model: first, copulas are used instead of a graphical model in estimation of distribution algorithms, second, RBF networks serve as surrogate models in mixed-variable genetic algorithms, and third, Gaussian processes are employed in Bayesian optimization algorithms as a sampling model and in the Covariance matrix adaptation Evolutionary strategy (CMA-ES) as a surrogate model. The last combination, described in the core part of the thesis, resulted in the Doubly trained surrogate CMA-ES (DTS-CMA-ES). This algorithm uses the uncertainty prediction of a Gaussian process for selecting only a part of the CMA-ES population for evaluation with the expensive objective function while the mean prediction is used for the rest. The DTS-CMA-ES improves upon the state-of-the-art surrogate continuous optimizers in several benchmark tests.
60

The multi Davydov-Ansatz: Apoptosis of moving Gaussian basis functions with applications to open quantum system dynamics

Werther, Michael 09 October 2020 (has links)
We utilize the multi Davydov-Ansatz, an Ansatz of the bosonic many-body wave function in terms of moving Gaussian basis functions, to illuminate several aspects of open quantum system dynamics and quantum many-body theory. By two artifices alongside the time-dependent variational principle we extract from this Ansatz, commonly considered ill-behaved and not converging, a highly stable and converging method. Its extremely favourable scaling of the numerical effort with the number of degrees of freedom facilitates exploration of the zero and non-zero temperature physics of both system and environment of open quantum systems in the strong coupling regime, even in cases where the system is laser-driven. The discovery that strongly coupling a system to an environment may, apart from the introduction of dissipation and decoherence also serve as a resource for the system has fuelled the research on strongly correlated open quantum systems. Although the advent of ultra powerful data processors enables advanced methods to tackle these systems, their explicit treatment without further assumptions remains an eminently challenging task. With the multi Davydov-Ansatz we numerically exactly calculate the dynamics of various open systems coupled strongly to an environment. In particular, we illuminate diverse aspects of laser-driven molecular dynamics in dissipative environments. Based on a rigorous investigation of the time-dependent variational principle for moving Gaussian basis functions, we systematically develop a linear algebra formulation of the system of equations of motion for the Ansatz parameters. On its basis we precisely isolate the origin of the issues related to the multi Davydov-Ansatz and solve the long-standing convergence problem of the method by a regularization termed apoptosis. We show exemplary for the ohmic and sub-ohmic Spin-Boson model that apoptosis renders the multi Davydov-Ansatz a highly stable method with an outstanding speed of convergence, suited to numerically exactly reproduce the dynamics of the model at surprisingly humble numerical effort even for strong coupling strengths. Furthermore, since they are not suited to efficiently reproduce Fock number states in many-body systems, we shed some light on possible extensions of the Gaussian basis functions in the multi Davydov-Ansatz in terms of displaced number states and in terms of squeezed states. In particular we argue that due to the emergence of an inappropriate number of equations of motion, there is no straightforward generalization of the multi Davydov-Ansatz by displaced number states. For the purpose of further optimization of the multi Davydov-Ansatz, we investigate in detail the impact on the numerical effort of different representations of an open system's environment. In particular, different frequency discretizations for given continuous spectral densities are examined with respect to the speed of convergence of the system dynamics to the continuum limit. We utilize a Windowed Fourier Transform as an a priori measure for the quality of the discretized representation of bath correlations. Furthermore, efficient representations of the environment for shifted initial conditions in general and non-zero temperature in particular are found systematically. As an alternative representation of an environment of mutually uncoupled harmonic oscillators, we investigate an environment represented in terms of a linear chain of effective modes. In this context we detail how to consistently reformulate the effective mode representation in second quantization, removing inadvertent double excitations introduced by the original formulation. We show that the alternative representation is beneficial in cases where the bath spectral density is highly structured, while for the ohmic and sub-ohmic spectral density of the Spin-Boson model it is of no advantage. Once we have identified the numerically most efficient representation of the environment, we apply the multi Davydov-Ansatz in order to illuminate several aspects of open quantum system dynamics whose investigation has previously remained occlusive. In particular, the access to the exact dynamics of the environmental degrees of freedom allows to shed light on the question for the channels through which energy can be interchanged between system and environment in the considered systems. Firstly, in a system-bath setup we survey the vibrational relaxation dynamics of deuterium dimers at a silicon surface. The investigation of the relaxation dynamics requires the quantum mechanical treatment of multiple system levels, which in turn prohibits a treatment of the environmental dynamics on a perturbative level. We demonstrate that the multi Davydov-Ansatz allows for a numerically exact calculation of the system dynamics with multiple system levels and a huge number of surface vibrations explicitly taken into account. Furthermore, due to the structure of the spectral density of the environment, the effective mode representation allows for this system to dramatically reduce the numerical effort. Secondly we shall investigate in detail the relaxation dynamics of an exciton in a one-dimensional molecular crystal. Since the strong coupling regime renders highly complicated the phonon dynamics, apoptosis turns out to be inevitably required in order to reliably converge the system dynamics. We show that the multi Davydov-Ansatz equipped with apoptosis allows for an extremely efficient calculation of the exciton and phonon dynamics, for both large hopping integrals and large molecular crystals. Furthermore we illuminate diverse aspects of laser-driven molecular dynamics in a dissipative environment. By restriction to two electronic energy levels we determine the channels through which system and environment interchange energy in the vicinity of an avoided crossing in a dissipative Landau-Zener model. In particular, we reveal that the final transition probability can be tuned by coupling to the environment for both diagonal and off-diagonal coupling. By appropriately adjusting the initial excitation of the system, the final transition probability is shown to converge to a fixed value for increasing coupling. Finally, we investigate in detail laser-induced population transfer by rapid adiabatic passage in a dissipative environment. By application of the multi Davydov-Ansatz it is shown for zero as well as for non-zero temperature that strongly coupling the system to an environment can serve as a resource for the population inversion. In particular, we shall examine how the coupling to the environment compensates for the decay channels in the system even if the laser pulse is only weakly chirped.:1. Introduction 2. Prerequisites 2.1. Harmonic oscillator basics 2.2. Canonical coherent states of the harmonic oscillator 2.3. Overcompleteness of CS and the Segal-Bargmann transformation 2.4. Density operator representation in terms of CS 2.5. Ideal squeezed states 2.6. Displaced number states 2.7. On the variational principle 3. Real time propagation with CS 3.1. Variational principle with CS 3.1.1. Gauge freedom in the vMCG Ansatz 3.1.2. Equations of motion for the vMCG Ansatz 3.2. Standard form of the linear system 3.3. Regularity of the coefficient matrix 3.3.1. Regularization in the case of vanishing coefficients 3.3.2. Apoptosis of CS 3.4. The route to Semiclassics 3.5. Variational principle with DNS and squeezed states 3.6. The multi Davydov-Ansatz 3.7. The multi Davydov-Ansatz at non-zero temperature 4. Open Quantum Systems 4.1. System-Bath Hamiltonian 4.2. The road to classical dissipation 4.3. The impact of apoptosis and regularization of the 𝜌-matrix 4.3.1. Multi Davydov-Ansatz for the Quantum Rabi model 4.3.2. Multi Davydov-Ansatz and the Spin-Boson model 4.3.2.1. Spin-Boson model in the ohmic regime 4.3.2.2. Spin-Boson model in the sub-ohmic regime 4.4. The Windowed Fourier Transform 4.5. The sub-ohmic case and the problem of oversampling 4.5.1. On the polarized initial condition 4.5.2. On the treatment of non-zero temperature 4.6. The Effective Mode Representation 5. Applications 5.1. Vibrational relaxation dynamics at surfaces 5.2. Relaxation dynamics of the Holstein polaron 5.3. The dissipative Landau Zener Model 5.3.1. Coupling to a single environmental mode 5.3.2. Coupling to multiple environmental modes 5.4. Rapid Adiabatic Passage with a dissipative environment 6. Summary And Outlook List of abbreviations Appendix A. Closure relation of displaced number states B. Hamilton equations: classical vs. CCS for a Morse oscillator C. Equations of motion for the multi Davydov-Ansatz C.1. D2-Ansatz C.2. D1-Ansatz D. Details of implementation E. Calculation of the BCF F. Calculation of the polarized initial condition for 𝑇 = 0 Bibliography List of publications

Page generated in 0.1392 seconds