• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 299
  • 103
  • 39
  • 35
  • 32
  • 23
  • 11
  • 10
  • 9
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • Tagged with
  • 691
  • 126
  • 126
  • 123
  • 105
  • 93
  • 89
  • 82
  • 76
  • 70
  • 59
  • 57
  • 54
  • 53
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Εκτίμηση των παραμέτρων της διπαραμετρικής εκθετικής κατανομής από ένα διπλά διακεκομμένο δείγμα

Δασκαλάκη, Ιωάννα 05 January 2011 (has links)
Η παρούσα μεταπτυχιακή διατριβή εντάσσεται ερευνητικά στην περιοχή της Στατιστικής Θεωρίας Αποφάσεων και ειδικότερα στην εκτίμηση των παραμέτρων στο μοντέλο της διπαραμετρικής εκθετικής κατανομής με παράμετρο θέσης μ και παράμετρο κλίμακος σ. Θεωρούμε ένα δείγμα n τυχαίων μεταβλητών, καθεμία από τις οποίες ακολουθεί την διπαραμετρική εκθετική κατανομή. Λογοκρίνουμε κάποιες αρχικές παρατηρήσεις και έστω ότι τερματίζουμε το πείραμά μας πριν αποτύχουν όλες οι συνιστώσες. Τότε προκύπτει ένα διπλά διακεκομμένο δείγμα διατεταγμένων παρατηρήσεων. Η εκτίμηση των παραμέτρων της διπαραμετρικής εκθετικής κατανομής, γίνεται από το συγκεκριμένο δείγμα. Πρώτα μελετάμε κάποιες βασικές έννοιες της Στατιστικής και της Εκτιμητικής και βρίσκουμε εκτιμητές για τις παραμέτρους. Πιο συγκεκριμένα, βρίσκουμε αμερόληπτο εκτιμητή ελάχιστης διασποράς, εκτιμητή μέγιστης πιθανοφάνειας, εκτιμητή με την μέθοδο των ροπών και τον βέλτιστο αναλλοίωτο εκτιμητή σε συγκεκριμένη κλάση, αντίστοιχα και για τις δύο παραμέτρους. Σαν βελτίωση των προηγούμενων εκτιμητών, ακολουθούν οι εκτιμητές τύπου Stein και, ολοκληρώνοντας, ασχολούμαστε με πρόβλεψη κατά Bayes για μια μελλοντική παρατήρηση / The present master thesis deals with the estimation of the location parameter μ and the scale parameter σ of the two-parameter exponential distribution. A sample n of random variables from the two-parameter exponential distribution is assumed. Part of the initial variables is censored and the experiment is terminated before all the components fail. A doubly censored sample emerges from which the two-parameter exponential distribution's parameters are estimated. First of all, basic Statistics' concepts are studied in order to estimate the parameters. More specifically, the Minimum Variance Unbiased Estimator (MVUE), the Maximum Likelihood Estimator (MLE), the estimator based on the Method of Moments and the best affine equivariant estimator are computed for both the parameters. To improve the previous estimators, the Stein method is used and to conclude the Bayes prediction is used for future observation
442

Improving search results with machine learning : Classifying multi-source data with supervised machine learning to improve search results

Stakovska, Meri January 2018 (has links)
Sony’s Support Application team wanted an experiment to be conducted by which they could determine if it was suitable to use Machine Learning to improve the quantity and quality of search results of the in-application search tool. By improving the quantity and quality of the results the team wanted to improve the customer’s journey. A supervised machine learning model was created to classify articles into four categories; Wi-Fi & Connectivity, Apps & Settings, System & Performance, andBattery Power & Charging. The same model was used to create a service that categorized the search terms into one of the four categories. The classified articles and the classified search terms were used to complement the existing search tool. The baseline for the experiment was the result of the search tool without classification. The results of the experiment show that the number of articles did indeed increase but due mainly to the broadness of the categories the search results held low quality.
443

Eleição de técnicas e parâmetros ventiltórios para o pós-operatório de cirurgia cardíaca / Carolina Napoli Madureira Schenekenberg ; orientadora, Andreia Malucelli

Schenekenberg, Carolina Napoli Madureira January 2009 (has links)
Dissertação (mestrado) - Pontifícia Universidade Católica do Paraná, Curitiba, 2009 / Bibliografia: f. 62-68 / O uso da ventilação mecânica no pós-operatório de cirurgia cardíaca pode trazer algumas complicações respiratórias ao paciente. Para minimizar este risco é necessária a adaptação correta e rápida do ventilador mecânico. A dificuldade para isso está no núm
444

Sistema especialista para apoio à perícias médicas para autorização de procedimento cirúrgico para tratamento de obesidade mórbida / Josiane Justus ; orientador, Laudelino Cordeiro Bastos ; co-orientador, João da Silva Dias

Justus, Josiane January 2005 (has links)
Dissertação (mestrado) - Pontifícia Universidade Católica do Paraná, Curitiba, 2005 / Bibliografia: f. 84-87 / Atualmente, a autorização da realização de cirurgias para o tratamento de Obesidade Mórbida, deve ser precedida por exame pericial médica, ou seja, exame documental e clínico, realizado por médico perito. Doença que acomete mais de 10% da população brasil / According to research conducted in 2003 and 2004 by the Brazilian Geography and Statistics Institute and published in written and televised media on December 16, 2004, 10% of the Brazilian population suffers from Morbid Obesity. If someone seeks approval
445

Sistema de apoio à decisão para elegibilidade de pacientes a atenção domiciliar / Denise Szczypior Pinheiro Lima ; orientador, João da Silva Dias ; co-orientador, Laudelino Cordeiro Bastos

Lima, Denise Szczypior Pinheiro January 2006 (has links)
Dissertação (mestrado) - Pontifícia Universidade Católica do Paraná, Curitiba, 2006 / Bibliografia: f. 61-64 / A Atenção Domiciliar é um termo genérico que representa diversas atividades de saúde desenvolvidas no domicílio do paciente. Está recebendo ênfase na área da saúde pelos benefícios que presta ao paciente e também pela redução de custos, comparativamente à / Home Care is a generic term that includes a lot of health activities developed at patient's home. Home Care provides a model service taking enfasis in health area by giving benefit to the pacient and for reducing costs to the health system. This activity
446

Bayesian BDI agents and approaches to desire selection / Agentes BDI bayesianos e abordagens para seleção de desejos

Luz, Bernardo Martins da January 2013 (has links)
O raciocínio realizado em agentes BDI envolve essencialmente manipular três estruturas de dados representando suas crenças, desejos e intenções. Crenças de agentes BDI tradicionais não representam incerteza, e podem ser expressas como um conjunto fechado de literais ground. As restrições que indicam se um dado desejo é viável e pode ser adotado como uma intenção em agentes BDI tradicionais podem ser representadas como expressões lógicas sobre crenças. Dado que Redes Bayesianas permitem que representem-se informações com incerteza probabilisticamente, agentes BDI bayesianos as empregam para suportar incerteza em suas crenças. Em agentes BDI bayesianos, crenças representadas em Redes Bayesianas referem-se a estados de variáveis de eventos, possuindo probabilidades dinâmicas individuais que referem-se à incerteza. Os processos the constituem o raciocínio neste modelo de agente requerem mudanças a fim de acomodar esta diferença. Dentre estes processos, este trabalho concentra-se especificamente na seleção de desejos. Uma estratégia prévia para seleção de desejos é baseada em aplicar um limiar a probabilidades de crenças. Entretanto, tal abordagem impede que um agente selecione desejos condicionados em crenças cujas probabilidades estejam abaixo de um certo limiar, mesmo que tais desejos pudessem ser atingidos caso fossem selecionados. Para lidar com esta limitação, desenvolvemos três abordagens alternativas para seleção de desejos sob incerteza: Ranking Probabilístico, Loteria Viciada e Seleção Multidesejos Aleatória com Viés. Probability Ranking seleciona um desejo usando uma lista de desejos ordenados em ordem decrescente de probabilidade de pré-condição. Loteria Viciada seleciona um desejo usando um valor numérico aleatório e intervalos numéricos – associados a desejos – proporcionais às probabilidades de suas pré-condições. Seleção Multidesejos Aleatória com Viés seleciona múltiplos desejos usando valores numéricos aleatórios e considerando as probabilidades de suas pré-condições. Apresentamos exemplos, incluindo o agente Vigia, assim como experimentos envolvendo este, para mostrar como essas abordagens permitem que um agente às vezes selecione desejos cujas crenças pré-condições possuem probabilidades muito baixas. / The reasoning performed in BDI agents essentially involves manipulating three data structures representing their beliefs, desires and intentions. Traditional BDI agents’ beliefs do not represent uncertainty, and may be expressed as a closed set of ground literals. The constraints that indicate whether a given desire is viable and passive to be adopted as an intention in traditional BDI agents may be represented as logical expressions over beliefs. Given that Bayesian Networks allow one to represent uncertain information probabilistically, Bayesian BDI agents employ Bayesian Networks to support uncertainty in their beliefs. In Bayesian BDI agents, beliefs represented in Bayesian Networks refer to states of event variables, holding individual dynamic probabilities that account for the uncertainty. The processes that constitute reasoning in this agent model require changes in order to accomodate this difference. Among these processes, this work is specifically concerned with desire selection. A previous strategy for desire selection is based on applying a threshold on belief probabilities. However, such an approach precludes an agent from selecting desires conditioned on beliefs with probabilities below a certain threshold, even if those desires could be achieved if they were selected. To address this limitation, we develop three alternative approaches to desire selection under uncertainty: Probability Ranking, Biased Lottery and Multi-Desire Biased Random Selection. Probability Ranking selects a desire using a list of desires sorted in decreasing order of precondition probability. Biased Lottery selects a desire using one random numeric value and desire-associated numeric intervals proportional to the probabilities of the desires’ preconditions. Multi-Desire Biased Random Selection selects multiple desires using random numeric values and considering the probabilities of their preconditions. We present examples, including theWatchman agent, as well as experiments involving the latter, to show how these approaches allow an agent to sometimes select desires whose belief preconditions have very low probabilities.
447

Uso potencial de ferramentas de classificação de texto como assinaturas de comportamentos suicidas : um estudo de prova de conceito usando os escritos pessoais de Virginia Woolf

Berni, Gabriela de Ávila January 2018 (has links)
A presente dissertação analisa o conteúdo dos diários e cartas de Virginia Woolf para avaliar se um algoritmo de classificação de texto poderia identificar um padrão escrito relacionado aos dois meses anteriores ao suicídio de Virginia Woolf. Este é um estudo de classificação de texto. Comparamos 46 entradas de textos dos dois meses anteriores ao suicídio de Virginia Woolf com 54 textos selecionados aleatoriamente do trabalho de Virginia Woolf durante outro período de sua vida. O texto de cartas e dos diários foi incluído, enquanto livros, romances, histórias curtas e fragmentos de artigos foram excluídos. Os dados foram analisados usando um algoritmo de aprendizagem mecânica Naïve-Bayes. O modelo mostrou uma acurácia de 80,45%, sensibilidade de 69% e especificidade de 91%. A estatística Kappa foi de 0,6, o que significa um bom acordo, e o valor P do modelo foi de 0,003. A Área Sob a curva ROC foi 0,80. O presente estudo foi o primeiro a analisar a viabilidade de um modelo de machine learning, juntamente com dados de texto, a fim de identificar padrões escritos associados ao comportamento suicida nos diários e cartas de um romancista. Nossa assinatura de texto foi capaz de identificar o período de dois meses antes do suicídio com uma alta precisão / The present study analyzes the content of Virginia Woolf’s diaries and letters to assess whether a text classification algorithm could identify written pattern related to the two months previous to Virginia Woolf’s suicide. This is a text classification study. We compared 46 texts entries from the two months previous to Virginia Woolf’s suicide with 54 texts randomly selected from Virginia Woolf’s work during other period of her life. Letters and diaries were included, while books, novels, short stories, and article fragments were excluded. The data was analyzed by using a Naïve-Bayes machine-learning algorithm. The model showed a balanced accuracy of 80.45%, sensitivity of 69%, and specificity of 91%. The Kappa statistic was 0.6, which means a good agreement, and the p value of the model was 0.003. The Area Under the ROC curve was 0.80. The present study was the first to analyze the feasibility of a machine learning model coupled with text data in order to identify written patterns associated with suicidal behavior in the diaries and letters of a novelist. Our text signature was able to identify the period of two months preceding suicide with a high accuracy.
448

A bayesian network system for tinnitus diagnostics

Jangholi, Narges January 2014 (has links)
Orientador: Prof. Dr. Peter M. E. Claessens / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Neurociência e Cognição, 2014. / Zumbido (tinnitus) é um distúrbio comum de audição, muitas vezes debilitante em graus variados. Dado que zumbido é uma condição multifacetada, com sintomas que frequentemente são psicológicos e subjetivos, e com muitas causas potenciais, a diagnose deste distúrbio não é trivial. Por exemplo, zumbido pode ser objetivo e mensurável ou subjetivo e produzido por fatores neurais que podem ser de localização mais periférica ou central. Este projeto de mestrado propõe o desenvolvimento de um sistema especialista médico para apoiar clínicos na indicação de tratamento para zumbido. Este estudo foca em três tipos de tratamento para zumbido, a saber, dieta, medicação e aparelho auditivo, como também nas combinações, para categorização supervisionada. Redes Bayesianas ingênuas (naive) foram utilizadas para relacionar uma diversidade de resultados de exames e elementos de anamnese a indicações de tratamento por clínicos. Como tratamentos não são mutualmente exclusivos, a categorização deve levar em conta casos multi-label, isto é, a possibilidade de indicações diferentes de tratamento simultâneas. Com o objetivo de mapear as probabilidades a posteriori das indicações diferentes de tratamento para classificação multi-label , a diferença entre as distribuições a posteriori foi usada como critério para resolver o problema multi-label. Esta estratégia foi avaliada e o desempenho comparada a uma estratégia mais simples de mapeamento single-label. Os resultados mostram que a acurácia da abordagem multi-label é melhor que o ajuste single-label. O sistema fornece assim um primeiro passo satisfatório do desenvolvimento de um sistema de apoio médico futuramente mais amplo, integrado e dinâmico. / Tinnitus is a common hearing disorder, often debilitating to varying degrees. Given that tinnitus is a multifaceted condition, with symptoms that are often psychological and subjective, and with many different possible causes, its diagnosis is not trivial. For example, tinnitus can be objective and measureable or subjective and produced by neural factors which can either be more peripheral or more centrally located. This Master¿s project proposes the development of a medical expert system to assist clinicians in the indication of treatment for tinnitus. This study focused on three types of treatment for tinnitus, namely, Diet, Medication and Hearing Aid, as well as on their combinations for supervised categorization. Naïve Bayes networks were used to relate a diversity of test results and elements of the anamnesis to treatment referrals by clinicians. Because treatments are not mutually exclusive, the categorization needs to take into account multi-labeling cases, that is, the possibility of several simultaneous treatment indications. In order to map the posterior probabilities of the different treatment indications to multi-labeling classification, the difference between posterior probabilities was used as a criterion to solve the multi-labeling problem. This strategy was evaluated and its performance compared to a simpler single-labeling mapping strategy. The result shows that the accuracy of the multi-labeling approach is higher than a single-labeling adjustment. The system thus provides a first satisfactory step in the development of a more encompassing, integrated and dynamic medical support system.
449

Uma revisão do fator de Bayes com aplicação à modelos com misturas.

Missão, Érica Cristina Marins 11 March 2004 (has links)
Made available in DSpace on 2016-06-02T20:05:58Z (GMT). No. of bitstreams: 1 DissECMM.pdf: 1660938 bytes, checksum: 066c901ea835b9ef55119d64f6806e4a (MD5) Previous issue date: 2004-03-11 / Universidade Federal de Sao Carlos / O fator de Bayes é uma ferramenta utilizada na seleção de modelos. Neste trabalho fazemos uma revisão abrangente de diversos aspectos do fator de bayes. Também apresentamos as soluções disponíveis atualmente para os problemas relacionados à distribuição a priori imprópria como o fator de Bayes intrínseco e o fator de bayes fracional. São apresentados resultados de simulações com o fator de bayes sendo utilizado na seleção de modelos e uma aplicação a um conjunto de dados reais. Nestas smulações e na aplicação utilizamos o fator de Bayes e o fator de Bayes fracional.
450

Modelo com mistura de multinomiais aplicado à identificação de proteínas similares.

Coimbra, Ricardo Galante 24 February 2005 (has links)
Made available in DSpace on 2016-06-02T20:06:08Z (GMT). No. of bitstreams: 1 DissRGC.pdf: 2581095 bytes, checksum: 4a2f54d065969def7422a978d84a16f4 (MD5) Previous issue date: 2005-02-24 / The proteins are important molecules from the cells, whereas they take part since the construction of cell´s framing until the transmission of the genetic information between the generations. A protein can be characterized by its function and its function is determined by the sequence of amino acids that determines its structure. To determined the protein's function is important, for instance, in a research about the cure of diseases or searching for new drugs. In this research we use a bayesian statistical methodology with mixture of multinomial and latent variables to identify proteins with similar function. We use simulations to verify the performance of the statistical model for identifying the similar proteins. At the end we apply the modeling to a real data set. / As proteínas são moléculas importantes das células, pois participam desde a construção das estruturas celulares até a transmissão de informações genéticas entre gerações. Uma proteína pode ser caracterizada pela sua função, sendo que esta função é determinada pela sequência de aminoácidos que compõe a sua estrutura. Determinar a função protéica é importante quando, por exemplo, se pesquisa a cura de doenças ou se pesquisa a fabricação de novos medicamentos. Neste trabalho utilizamos uma metodologia bayesiana de inferência estatística para inferir sobre o modelo com mistura de distribuições multinomiais e variáveis latentes para identificar proteínas com funções similares. Verificamos a performance da modelagem proposta em separar em grupos as proteínas com funções similares através de simulação.

Page generated in 0.1137 seconds