Spelling suggestions: "subject:"beta hairpin"" "subject:"beta underpins""
1 |
Designed Synthetic Peptides : Models For Studies Of Conformational Transitions And Aromatic InteractionsRajagopal, A 04 1900 (has links) (PDF)
This thesis set out to explore the conformational properties of short designed peptide sequences, in which transitions between structural states may be anticipated. The use of conformationally constrained residues like α-aminoisobutyric acid (Aib) and D-proline (DPro) permits the design of model sequences for structural studies. The principle of imposing conformational constraints by multiple substitutions at backbone atoms in aminoacid residues may also be extended to the higher homologs of α-amino acids,
namely β and residues. The experimental results presented in this thesis also examine the potential of using cross-strand interactions between aromatic residues as a probe of structure in designed peptide β-hairpins.
Chapter 1 provides a very brief introduction to the necessary background on which the experimental studies in this thesis are based.
Chapter 2 describes studies aimed at establishing chain length effects on helix-hairpin conformational distributions in short synthetic sequences, containing centrally positioned Aib-DAla and Aib-Aib segments.The Aib-DAla dipeptide segment has a tendency to form both type-I'/III' and type-I/III β-turns. The occurrence of prime turns facilitates the formation of β-hairpin conformations, while type-I/III turns can nucleate helix formation. The octapeptide Boc-Leu-Phe-Val-Aib-DAla-Leu-Phe-Val-OMe (1) has been previously shown to form a β-hairpin in the crystalline state and in solution. The effects of sequence truncation have been examined using the model peptides Boc-Phe-Val-Aib-Xxx-Leu-Phe-NHMe (2, 6), Boc-Val-Aib-Xxx-Leu-NHMe (3, 7) and Boc-Aib-Xxx-NHMe (4, 8), where Xxx = DAla, Aib. For peptides with central Aib-Aib segments, Boc-Phe-Val-Aib-Aib-Leu-Phe-NHMe (6), Boc-Val-Aib-Aib-Leu-NHMe (7) and Boc-Aib-Aib-NHMe (8) local helical conformations have been established by NMR studies in both hydrogen bonding (CD3OH) and non-hydrogen bonding (CDCl3) solvents. In contrast, the corresponding hexapeptide Boc-Phe-Val-Aib-DAla-Leu-Phe-Val-NHMe (2) favors helical conformations in CDCl3 and β-hairpin conformations in CD3OH. β-Turn conformations (type-I /III) stabilized by intramolecular 4 1 hydrogen bonds are observed for the peptide Boc-Aib-DAla-NHMe (4) and Boc-Aib-Aib-NHMe (8) in crystals. The tetrapeptide Boc-Val-Aib-Aib-Leu-NHMe (7) adopts an incipient 310-helical conformation stabilized by three 4 1 hydrogen bonds. The peptide Boc-Val-Aib-DAla-
Leu-NHMe (3) adopts a novel -turn conformation, stabilized by three intramolecular hydrogen bonds (two 4 1 and one 5 1). The Aib-DAla segment adopts a type-I' β-turn conformation. The observation of the NOE Val(1) NH HNCH3 (5), in CD3OH, suggests that the solid state conformation of peptide 3 is maintained in methanol solutions.
Peptide hairpins provide an ideal scaffold for exploring cross-strand interactions between residues on facing antiparallel strands. Chapter 3 reports studies directed towards probing, aromatic interactions between facing Phe residues, positioned at the non-hydrogen bonding positions in designed octapeptide β-hairpins. The studies described in this Chapter employ ring current shifted aromatic proton resonances as a means of probing aromatic ring orientations. Crystal structures of eight peptide -hairpins with the sequence Boc-Leu-Phe-Val-Xxx-Yyy-Leu-Phe-Val-OMe revealed that the Phe(2) and Phe(7) aromatic rings are in close spatial proximity, with a centroid-centroid distance (Rcen) of 4.4Å to 5.4Å between the two phenyl rings. Proton NMR spectra in chloroform and methanol solutions reveal a significant upfield shift of the Phe(7) C , ′ H2 protons
(6.65 ppm to 7.04 ppm). Specific assignments of the aromatic protons have been carried out in the peptide Boc-Leu-Phe-Val-DPro-LPro-Leu-Phe-Val-OMe (6). The anticipated ring current shifts have been estimated from the aromatic ring geometries observed in crystals for all eight peptides. Only one of the C , ′ H proton lies in the shielding zone, with rapid ring flipping, resulting in averaging between the two extreme chemical shifts. An approximate estimate of the population of conformations which resemble crystal state orientations may be obtained. Key nuclear Overhauser effects (NOEs) between facing Phe sidechains provide support for close similarity between the solid state and solution conformations. Temperature dependence of aromatic ring proton chemical shifts and line widths for peptide 6 (Boc-Leu-Phe-Val-DPro-LPro-Leu-Phe-Val-OMe) and the control peptide Boc-Leu-Val-Val-DPro-Gly-Leu-Phe-Val-OMe establish an enhanced barrier to ring flipping, when the two Phe rings are in proximity. Modeling studies suggest that small, conformational adjustments about the C -C ( 1), and C -C ( 2) bonds of the Phe residues may be required in order to permit unhindered, uncorrelated flipping of both the Phe rings. The maintenance of specific aromatic ring orientations in organic solvents provides evidence for significant stabilizing interactions.
Earlier studies from this laboratory established that a centrally positioned DPro-LPro-DAla segment could induce hairpin formation in nonapeptide sequences, facilitated by a three residue loop segment. The DAla residue at position 6 in the nonapeptide Boc-Leu-Phe-Val-DPro-LPro-DAla-Leu-Phe-Val-OMe has been shown to adopt a left handed helical (αL) conformation. The studies described in Chapter 4, examine the effects of aminoacid replacements at positions 5 and 6. NMR studies on eight nonapeptides, with the general sequence Boc-Leu-Phe-Val-DPro-Xxx-Yyy-Leu-Phe-Val-OMe are described. In the case of peptides with a central DPro-LPro-Yyy sequence, two kinds of hairpin conformations are formed in solution. These are; i) β-hairpin structures with a central three residue loop, resulting in registered antiparallel tripeptide strands, and ii) a slipped hairpin structure, nucleated by a central DPro-LPro type-II β-turn, with residue 6 being incorporated into the C-terminal strand. The three residue loop β-hairpins are favored for DAla(6) and Aib(6), while the LAla(6) peptide favors a “slipped” hairpin structure. Replacement of the Pro(5) residue by LAla results in a reduced population of three residue hairpins in the nonapeptide with the DPro-LAla-DAla segment. Replacement of Pro(5) by Aib, abolished hairpin formation. Aromatic proton chemical shifts provide a convenient diagnostic for the presence of three residue loop hairpin conformations in these nonapeptides.
A great deal of current interest has focused on the conformations of peptides incorporating β and γ aminoacid residues. Earlier studies from this laboratory have focused on the conformational properties of the β,β -disubstituted γ residue gabapentin (1-aminomethylcyclohexane acetic acid). Subsequent work with the related β aminoacid β3,3Ac6c (1-aminocyclohexaneacetic acid) revealed that intramolecularly hydrogen bonded conformations are infrequently observed in short peptides. The studies described in Chapter 5, examine the conformational properties for model peptides containing the isomeric β-aminoacid, β2,2Ac6c (1-aminomethylcyclohexane-1-carboxylic acid). The effect of gem dialkyl substituents on the backbone conformations of amino acid residues in peptides, has been investigated using four model peptides, Boc-Xxx-2,2Ac6c-NHMe [Xxx = Leu (1), Phe(2)] and Boc-Xxx- 3,3Ac6c-NHMe [Xxx = Leu (3), Phe(4)]. Tetrasubstituted carbon atoms restrict the ranges of stereochemically allowed
a C11 helical turn, which is a backbone expanded analog of the type III -turn in sequences. The crystal structure of the peptide Boc-Phe- 3,3Ac6c-NHMe (4) establishes a the asymmetric unit adopt backbone torsion angles of opposite signs. In one of the molecules, the Phe residue adopts an unfavourable backbone conformation, with the energetic penalty being offset by favourable aromatic interactions between proximal molecules in the crystal. NMR studies provide evidence for the maintenance of folded structures in solution, in these hybrid sequences. The result presented in this thesis suggests that it should be possible to construct designed synthetic peptides, which can undergo transitions between two distinct and energetically favourable conformational states. The ability to design peptide sequences that can undergo switching between helical and β-hairpin states, or between hairpin structures with variations in connecting loop length may prove valuable in providing further insights into the factors influencing conformational dynamics.
|
2 |
cHYD1 Solution Phase Synthesis Optimization and the Development of a Novel Human Growth Hormone Antagonist and AgonistMurray, Philip 01 January 2012 (has links)
Inhibiting protein-protein interactions to achieve a therapeutically desired effect has been a goal in the field of drug discovery for decades. Recently, advances in peptidomimetics have led researches to the use of cyclized peptides to achieve this goal. Cyclization of linear peptides restricts the number of conformations of the peptide, increasing the peptide's affinity to binding to the desired target. Cyclization also stabilizes the peptide, allowing the peptide to be resistant to proteases. This study explores the optimization of solution phase synthesis of an important integrin-mediated cell adhesion cyclic peptide for the therapeutic inhibition of multiple myeloma, cHYD1. cHYD1 was originally synthesized via solid phase peptide synthesis, and the need for a scaled up synthesis version was needed after positive bioactivity results were obtained. Chapter 3 includes the molecular modeling exploration of a possible new mechanism to which cyclized peptides could work, in which, rather than a recognition and non-recognition strand being implemented, a specific directional face is used for protein-protein interaction. This was done with the implementation of an antagonistic cyclic peptide to replace human growth hormone in its interaction with the human growth hormone receptor, and the subsequent di-cyclic peptide agonist.
|
3 |
Stereochemical Analysis On Protein Structures - Lessons For Design, Engineering And PredictionGunasekaran, K 12 1900 (has links) (PDF)
No description available.
|
4 |
X-Ray Crystallographic Studies Of Designed Peptides : Characterization Of Self-Assembled Peptide Nanotubes With Encapsulated Water Wires And β-Hairpins As Model Systems For β-Sheet FoldingRaghavender, U S 07 1900 (has links) (PDF)
The study of synthetic peptides aid in improving our current understanding of the fundamental principles for the de novo design of functional proteins. The investigation of designed peptides has been instrumental in providing answers to many questions ranging from the conformational preferences of amino acids to the compact folded structures and also in developing tools for understanding the growth and formation of the protein secondary structures (helices, sheets and turns). In addition, the self-assembly of peptides through non-covalent interactions is also an emerging area of growing interest. The design of peptides which can mimic the protein secondary structures relies on the use of stereochemically constrained amino acid residues at select positions in the linear peptide sequences, leading to the construction of protein secondary structural modules like helices, hairpins and turns. The use of non-coded amino acid residues with strict preferences for adopting particular conformations in the conformational space becomes the most crucial step in peptide design strategies. In addition the crystallographic characterization and analysis of the sequences provides the necessary optimization of the design strategies. The crystallographic characterization of designed peptides provides a definitive and conclusive proof of the success of a design strategy. Furthermore, the X-ray structures provide an atomic view of the interactions, both strong and weak, which govern the growth of the crystal. The information on the geometric parameters and stereochemical properties of a series of peptides, through a systematic study, provides the necessary basis for further scientific investigation, like the molecular dynamics and can also aid in improving the force field parameters meant for carrying out molecular simulations. This can be further complemented by constructing biologically active peptide sequences.
The focus of this thesis is to characterize crystallographically the conformational and structural aspects of peptide nanotubes and encapsulated water wires and the β-hairpin peptide models of β-sheets. The systematic study of a series of pentapeptide and octapeptide sequences, containing Aib and D-amino acid residues incorporated at strategic positions, establish the conformation and structural properties of designed peptides as mimics of protein secondary structures and hydrophobic tubular peptide channels and close-packed forms. The structures reported in this thesis are given below:
1 Boc-DPro-Aib-Leu-Aib-Val-OMe (DPUL5) C30H53N5O8
2 Boc-DPro-Aib-Val-Aib-Val-OMe (DPUV5a) C29H51N5O8 .(0.5) H2O
3 Boc-DPro-Aib-Val-Aib-Val-OMe (DPUV5b) C27H51N5O8 .(0.17) H2O
4 Boc-DPro-Aib-Ala-Aib-Val-OMe (DPUA5) C27H47N5O8
5 Boc-DPro-Aib-Phe-Aib-Val-OMe (DPUF5) C33H48N5O8
6 Boc-Pro-Aib-DLeu-Aib-DVal-OMe (PUDL5) C30H53N5O8
7 Boc-Pro-Aib-DVal-Aib-DVal-OMe (PUDV5a) C27H51N5O8 .(0.17) H2O
8 Boc-Pro-Aib-DVal-Aib-DVal-OMe (PUDV5b) C27H51N5O8 . 2H2O
9 Boc-Pro-Aib-DAla-Aib-DVal-OMe (PUDA5) C27H47N5O8
10 Boc-Pro-Aib-DPhe-Aib-DVal-OMe (PUDF5) C33H48N5O8
11 Ac-Phe-Pro-Trp-OMe (FPW) C28H32N4O5.(0.33)H2O
12 Boc-Leu-Phe-Val-DPro-Pro-Leu-Phe-Val-OMe (DPLP8) C56H84N8O1 1 .(0.5) H2O
13 Boc-Leu-Phe-Val-DPro-Pro-Leu-Phe-Val-OMe (YDPP8) C56H83N8O12 .(1.5) H2O
14 Boc-Leu-Val-Val-DPro-ψPro-Leu-Val-Val-OMe (PSIP8) C56H84N8O11S1 .(1.5) H2O
15 Boc-Leu-Phe-Val-DPro-Pro-Leu-Phe-Val-OMe (DPPV8) C48H84N8O11
16 Boc-Leu-Phe-Val-DPro-Aib-Leu-Phe-Val-OMe (DPUF8) C57H88N8O11.(1.5) H2O
17 Piv-Pro-ψH,CH3Pro-NHMe (PSPL3) C22H37N3O5S1
18 Boc-Leu-Val-Val-Aib-DPro-Leu-Val-Val-OMe (UDPV8) C47H84N8O11.2(C3H7NO)
19 Boc-Leu-Phe-Val-DPro-Ala-Leu-Phe-Val-OMe (BH1P8) C54H78N8O11.H2O
20 Boc-Leu-Phe-Val-DPro-Aib-Leu-Phe-Val-OMe (DPUFP8) C55H84N8O11. (0.5) H2O
21 Boc-Leu-Phe-Val-DPro-Pro-Leu-Phe-Val-OMe (YDPPP8) C56H83N8O12. (1.5) H2O
The crystal structure determination of the peptides presented in this thesis provides a wealth of information on the folding patterns of the sequences, in addition to the characterization of many structural and geometric properties. In particular, the study sheds light on the growth and formation of peptide nanotubes and the structure of encapsulated water wires, and also the structural details of Type I′ and Type II′β-turn nucleated hairpins. The study provides the backbone and side chain conformational parameters of the sequences, highlighting the varied conformational excursions possible in the peptide molecules.
The thesis is divided into 6 chapters and one appendix.
Chapter 1 gives a general introduction to the stereochemistry of the polypeptide chain, description of backbone torsion angles of α-amino acid residues and the major secondary structures of α-peptides, namely α-helix, β-sheet and β-turns. The basic structural features of
helices and sheets are given. A brief introduction to polymorphism and weak interactions is also presented, followed by a discussion on X-ray diffraction and solution to the phase problem.
Chapter 2 is divided into two parts. PART 1 describes the crystal structures of a series of eight related enantiomeric peptide sequences (Raghavender et al., 2009; Raghavender et al., 2010). The crystal structures of four sequences with the general formula Boc-DPro-Aib-Xxx-Aib-Val-OMe (Xxx = Ala/Val/Leu/Phe) and the enantiomeric sequences provided a set of crystal structures withdifferent packing arrangements. The structure of the peptide with Xxx = Leu revealed a nanotube formation with the Leu lining the inner walls of channel. The channels were found to be empty. The sequence with Xxx = Val revealed a solvent-filled water channel.Investigation of the water wire structures on the diffraction data collected on the same crystal over a period of time revealed the existence of two different kinds of water wires in thechannels. Comparison with the peptide tubular structures available in the literature and the water structure inside the aquaporin channels are contrasted. Close-packed structures are observed in the case of Xxx=Ala and Phe. The backbone conformations are essentially identical. Enantiomeric sequences also revealed similar structures. Polymorphic forms were observed in the case of DVal(3) containing sequence. One form is observed to have water-filled channels forming a nanotube, as opposed to the close-packed structure in the polymorphic form. Crystal parameters
DPUL5: C30H53N5O8; P65; a = b = 24.3673 (9) Å, c = 10.6844 (13) Å; α = β = 90°, γ = 120°; Z = 6; R = 0.0671, wR2 = 0.1446. DPUV5a: C29H51N5O8 .(0.5) H2O; P65; a = b = 24.2920 (13) Å, c = 10.4838 (11) Å; α = β = 90°, γ = 120°; Z = 6; R = 0.0554, wR2 = 0.1546. DPUV5b: C29H51N5O8 .(0.17) H2O; P65; a = b = 24.3161 (3) Å, c = 10.1805 (1) Å; α = β = 90°, γ = 120°; Z = 6; R = 0.0617, wR2 = 0.1844. DPUA5: C27H47N5O8; P212121; a = 12.2403 (8), b = 15.7531 (11) Å, c = 16.6894 (11) Å; Z =4; R = 0.0439, wR2 = 0.1249. DPUF5: C33H48N5O8; P212121; a = 10.3268 (8), b = 18.7549 (15) Å, c = 18.9682 (16) Å; Z = 4; R = 0.0472, wR2 = 0.1325.
PUDL5: C30H53N5O8; P61; a = b = 24.4102 (8) Å, c = 10.6627 (7) Å; α = β = 90°, γ = 120°; Z = 6; R = 0.0543, wR2 = 0.1495. PUDV5a: C29H51N5O8 .(0.17)H2O; P61; a = b = 24.3645 (14) Å, c = 10.4875 (14) Å; α = β = 90°, γ = 120°; Z = 6; R = 0.0745, wR2 = 0.1810. PUDV5b: C29H51N5O8. 2H2O; C2; a = 20.7278 (35), b = 9.1079 (15) Å, c = 19.5728 (33) Å; α = γ = 90°, β = 94.207°; Z = 6; R = 0.0659, wR2 = 0.1755. PUDA5: C27H47N5O8; P212121; a = 12.2528 (12), b = 15.7498 (16) Å, c = 16.6866 (16) Å; Z = 4; R = 0.0473, wR2 = 0.1278. PUDF5: C33H48N5O8; P212121; a = 10.3354 (8), b = 18.7733 (10) Å, c = 18.9820 (10) Å; Z = 4; R = 0.0510, wR2 = 0.1526.
PART 2 describes the crystallographic characterization of the tubular structure in a tripeptide Ac-Phe-Pro-Trp-OMe (FPW) sequence. The arrangement of the single-file water moleculesin the peptide nanotubes of FPW could be established by X-ray diffraction. In addition, the energetically favoured arrangement of the water wire inside the peptide channels could be modeled by understanding the construction of the peptide nanotube. In particular, the helicalmacrodipole of the peptide nanotube and the water wire dipoles prefer an antiparallel arrangement inside the peptide channels as opposed to parallel arrangements, is established by the classical dipole-dipole interaction energy calculation. In addition, the growth of thenanotubes and the arrangement of the water wires inside the channels could be correlated to the macroscopic dimensions of the crystal by the indexing of the crystal faces and contrasted with the structure of DPUV5. Crystal parameters
FPW: C28H32N4O5.(0.33)H2O; P65; a = b = 21.5674 (3) Å, c = 10.1035 (2) Å; α = β = 90°, γ = 120 °; Z = 6; R = 0.0786, wR2 = 0.1771
Chapter 3 provides the crystal structures of five octapeptide β-hairpin forming sequences and a tripeptide containing a modified amino acid, with modification in the side chain (pseudo-proline, ψH,CH3Pro). The parent peptide, Boc-Leu-Phe-Val-DPro-Pro-Leu-Phe-Val-OMe (DPLP8), was observed to form a strong Type II′β-turn at the DPro-Pro segment, and the strand segments adopting a β-sheet conformation. Two molecules were observed in the asymmetric unit, inclined to each other at approximately 70°. Modification in the strand sequence Phe(2) to Tyr(2) also resulted in a hairpin with identical conformation and similar packing arrangement. The difference was in the solvent content. In both the cases the molecules were packed orthogonal with respect to each other, resulting in the formation of ribbon-like structures in three dimensions. The replacement of Phe(2) and Phe(7) with Valine residues, with the retention of DPro-Pro β-turn segment, results in an entiely different packing arrangement (parallel). Modification of Pro(5) residue of the turn segment to Aib(5) and ψPro, also results in the molecules packing orthogonally to each other. The tripeptide with a modified form of ψPro, namely ψH,CH3Pro, resulted in a folded structure with a Type VIa β-turn, with the amide bond between the Pro-ψH,CH3Pro segment adopting a cis configuration (Kantharaju et al., 2009). Crystal parameters DPLP8: C56H84N8O11 .(0.5) H2O; P21; a = 14.4028 (8), b = 18.9623 (11) Å, c = 25.4903 (17) Å, β = 105.674 ° (4); Z = 4; R = 0.0959, wR2 = 0.2251. YDPP8: C56H84N8O12 .(1.5) H2O; P212121; a = 14.4028 (8), b = 18.9623 (11) Å, c = 25.4903
(17) Å, Z = 8; R = 0.0989, wR2 = 0.2064. PSIP8: C57H86N8O11S1.(1.5) H2O; C2; a = 34.6080 (2), b = 15.3179 (10) Å, c = 25.6025 (15) Å, β = 103.593 ° (3); Z = 4; R = 0.0931, wR2 = 0.2259. DPPV8: C48H84N8O11; P1; a = 9.922 (3), b = 11.229 (4) Å, c = 26.423 (9) Å, α = 87.146 (6), β = 89.440° (6), γ = 73.282 (7); Z = 2; R = 0.1058, wR2 = 0.2354. DPUF8: C57H88N8O11 .(1.5) H2O; P21; a = 18.410 (2), b = 23.220 (3) Å, c = 19.240 (3) Å, β = 118.036 ° (4); Z = 4; R = 0.1012, wR2 = 0.2061. PSPL3: C22H37N3O5S1; P31; a = b = 14.6323 (22), c = 10.4359 (22) Å, α = β = 90°, γ = 120°; Z = 3; R = 0.0597, wR2 = 0.1590.
Chapter 4 describes the crystal structure and molecular conformation of Type I′β-turn nucleated hairpin. The incorporation of Aib-DPro segment in the middle of Leu-Val-Val strands in the peptide sequence Boc-Leu-Val-Val-Aib-DPro-Leu-Val-Val-OMe results in an obligatory Type I′ turn containing hairpin. The molecular conformation and the packing arrangement of the molecules in the crystal are contrasted with the only Type I′β-hairpin reported in the literature and with a sequence where the turn residues are flipped and strand residues replaced with Phe(2) and Phe(7). Crystal parameters UDPV8: C47H84N8O11.2(C3H7NO); P21; a = 11.0623 (53), b = 18.7635 (89) Å, c = 16.6426
(80) Å, β = 102.369 (8); Z = 2; R = 0.0947, wR2 = 0.1730.
Chapter 5 provides the crystal structures of three polymorphic forms of β-hairpins. The structure of BH1P8 provides new insights into the packing of hairpins inclined orthogonally to each other. The two polymorphic forms differ not only in their modes of packing in crystals but also in the strong and weak interactions stabilizing the packing arrangements. The polymorphic forms of DPUFP8 differ only in the content of the solvent in the asymmetric unit and the role it plays in bridging the symmetry related pairs of molecules. The polymorphic form YDPPP8 crystallized in a completely different space group, revealing a completely different mode of packing and also the cocrystallized solvent participating in a different set of interactions. Crystal parameters
BH1P8: C54H78N8O11.H2O; P212121; a = 18.7511 (9), b = 23.3396 (11) Å, c = 28.1926 (13)Å; Z = 8; R = 0.1208, wR2 = 0.2898. DPUFP8: C55H84N8O11. (0.5) H2O; P21; a = 18.0950 (4), b = 23.0316 (5) Å, c = 18.6368 (5) Å, β = 117.471 (2); Z = 4; R = 0.0915, wR2 = 0.2096. YDPPP8: C56H83N8O12. (1.5) H2O; P21; a = 14.3184 (8), b = 18.9924 (9) Å, c = 25.1569 (14) Å, β = 105.590 (4); Z = 4; R = 0.1249, wR2 = 0.2929.
Chapter 6 provides a comprehensive overview of the β-hairpin peptide crystal structures published in the literature as well as those included in the thesis. The hairpins are classified based on the residues composing the β-strands and the mode of their packing in the crystals. In the crystal structures the hairpins are observed to adopt either a Type II′ or Type I′β-turns. The indexing of the crystal faces of a few representative hairpin peptides crystallographically characterized in this thesis, provides a rational explanation for the preferential growth of the crystals in certain directions, when correlated with the strong directional forces (hydrogen bonding) and weak interactions (van der Waals, aromatic-aromatic) observed in the crystal packing. The insights gained by these studies would be highly valuable in understanding the nucleation and growth of β-hairpin peptides and the formation of β-sheet structures.
Appendix I describes the Cambridge Structural Database (CSD) analysis of the conformational preferences of the proline residues found in the peptide crystal structures. The frequency distributions of the backbone φ, ψ and ω and side chain χ1, χ2, χ3, χ4 and θ torsion angles of the proline residues are calculated, tabulated and represented as graphical plots. The correlation between the backbone and endocyclic torsion angles provides for a clear evidence of the role of a particular torsion variable χ2 in deciding the state of puckering. In addition, the endocyclic bond angles also appear to be correlated, relatively strongly, with the χ2 torsion. This provides a geometrical explanation of the factors governing the puckering of the proline ring.
|
5 |
Structural Studies Of Functional Domains Of Morbillivirus Proteins And Designed Peptides Folding Into Helices And β-HairpinsVidya Harini, V 07 1900 (has links) (PDF)
No description available.
|
6 |
X-Ray Crystallographic Studies Of Designed Peptides : Characterization Of Novel Secondary Structures Of Peptides Containing Conformationally Constrained α-, β- And γ-Amino Acids And Polymorphic Peptide HelicesVasudev, Prema G 01 1900 (has links)
Structural studies of peptides are of great importance in developing novel and effective biomaterials ranging from drugs and vaccines to nano materials with industrial applications. In addition, they provide model systems to study and mimic the protein conformations. The ability to generate folded intramolecularly hydrogen bonded structures in short peptides is essential for peptide design strategies, which rely on the use of folding nuclei in the construction of secondary structure modules like helices and β-hairpins. In these approaches, conformational choices at selected positions are biased, using local stereochemical constraints, that limit the range of accessible backbone torsion angles. X-ray crystallographic studies of designed peptides provide definitive proof of the success of a design strategy, and provide essential structural information that can be utilized in the future design of biologically and structurally important polypeptides. Recent trends in peptide research focus on the incorporation of β-, γ- and higher homologs of the α-amino acid residues in designed peptides as they confer more proteolytic stability to the polypeptides. X-ray crystallographic studies of such modified peptides containing non-protein residues are essential, since information on the geometric and stereochemical properties of modified amino acids can only be gathered from the systematic structural studies of synthetic peptides incorporating them.
This thesis reports a systematic study of the structures and conformations of amino acid derivatives and designed peptides containing stereochemically constrained α-, β- and γ-amino acid residues and the structural studies of polymorphic peptide helices. The structures described in thesis contain the Cα,α-dialkyalted α-residues α-aminoisobutyric acid (Aib) and 1-aminocyclohexane-1-carboxylic acid (Ac6c), the β-amino acid residue 1-aminocyclohexane acetic acid (β3,3Ac6c) and the γ-amino acid residue 1-aminomethylcyclohexaneacetic acid (gabapentin, Gpn).
The crystal structure determination of peptides incorporating conformationally constrained α-, β- and γ- amino acid residues permitted the characterization of new types of hydrogen bonded turns and polymorphs. The studies enabled the precise determination of conformational and geometric parameters of two ω-amino acid residues, gabapentin and β 3,3Ac6c and provided detailed information about the conformational excursions possible for peptide molecules.
This thesis is divided into 10 chapters.
Chapter 1 gives a general introduction to the stereochemistry of the polypeptide chain, description of backbone torsion angles of α- and ω- amino acid residues and the major secondary structures of α-peptides, β-peptides, γ-peptides and hybrid peptides. A brief introduction to polymorphism and weak interactions, in particular aromatic interactions, is also provided, followed by a discussion on X-ray diffraction and solution to the phase
problem.
Chapter 2 describes the crystal structures of gabapentin zwitterion and its eight derivatives (Ananda, Aravinda, Vasudev et al., 2003). The crystal structure of the gabapentin zwitterions determined in this study is identical to that previously reported (Ibers, J. A. Acta Crystallogr. 2001, C57, 641-643). Eight of the nine achiral compounds crystallized in centrosymmetric space groups P21/c, C2/c or Pbca, while one derivative (Tos-Gpn-OH) crystallized in non-centrosymmetric space group Pna21 with four independent molecules in the asymmetric unit.The structural studies presented in this chapter reveal that the geminal substituents on the Cβ atom limits the values of dihedral angles θ1 and θ2 to ±60°, resulting in folded backbone conformations in all the examples. Intramolecular hydrogen bonds with 7-atoms in the hydrogen bond turn (C7) are observed in three derivatives, gabapentin hydrochloride (GPNCL), Boc-Gpn-OH (BGPNH) and Piv-Gpn-OH (PIVGPN), while a 9-atom hydrogen bonded turn (C9) is observed in Ac-Gpn-OH (ACGPH). Unique structural features, such as an unusual anti conformation of the COOH group (in ACGPH) and positional disorder of the cyclohexane ring (in BGPNN), indicating the co-existence of both the interconvertible chair
conformations, are revealed by the crystal structure analyses.
Chapter 3 describes the structural characterization of novel hydrogen bonded conformations of homo oligomers of Gpn. The crystal structures of three peptides, Boc-Gpn-Gpn-NHMe (GPN2), Boc-Gpn-Gpn-Leu-OMe (GPN2L) and Boc-Gpn-Gpn-Gpn-Gpn-NHMe (GPN4) provide the first crystallographic characterization of two new families of polypeptide structures, the C9 helices and C9 ribbons (Vasudev et al., 2005, 2007), in which the molecular conformations are stabilized by contiguous C9 turns formed by the hydrogen bonding between the CO group of residue (i) and the NH group of residue (i+2). The C9 hydrogen bond is characterized by a specific combination of the four torsion angles for the Gpn backbone, with the torsion angles θ1 and θ2 adopting g+/g+ or g /g- conformations. The structural analysis also permits precise determination of hydrogen bond geometry for the C9 structures, which is highly linear in contrast to the analogous γ-turn hydrogen bonds in α-peptides. A comparison of the backbone conformations in the three peptides reveals two classes of C9 hydrogen bonded secondary structures, namely C9 helices and C9 ribbons. The packing arrangement in these γ-peptides follows the same patterns as the helix packing in crystals of α-peptides.
Chapter 4 describes ten crystal structures of short hybrid peptides containing the Gpn
residue (Vasudev et al., 2007). In addition to the C7 and C9 hydrogen bonded turns which are defined by the backbone conformations at the Gpn residue, hybrid turns defined by a combination of backbone conformations at the α and γ-residues or at the β and γ-residues have been determined. Peptides Boc-Ac6c-Gpn-OH (ACGPH), Piv-Pro-Gpn-Val-OMe
(PPGPV) and Boc-Val-Pro-Gpn-OH (VPGPH) reveal molecular conformation stabilized by intramolecular C9 hydrogen bonds, while Boc-Ac6c-Gpn-OMe (ACGPO) and Boc-Gpn-Aib-OH (GPUH) are stabilized by a C7 hydrogen bonded turn at the Gpn residue. An αγ hybrid turn with 12 atoms in the intramolecular hydrogen bonded rings (C12 turns) has been observed in the tripeptide Boc-Ac6c-Gpn-Ac6c-OMe (ACGP3), while βγ hybrid turns with 13 atoms in the hydrogen bonded ring (C13 turns) have been characterized in the tripeptides Boc-βLeu-Gpn-Val-OMe (BLGPV) and Boc- βPhe-Gpn-Phe-OMe (BFGPF). The two βγ C13 turns belong to two different categories and are characterized by different sets of backbone torsion angles for the β and γ residues. A γα C10 hydrogen bond, which is formed in the N→C direction (NHi ••• COi+2), as opposed to the regular hydrogen bonded helices of α-peptides, has also been observed in BFGPF. The Chapter provides a comparison of the backbone torsion angles of the Gpn residue in various hydrogen bonded turns and a brief comparison of the observed hydrogen bonded turns with those of the α-peptides.
Chapter 5 describes the crystal structures of three αγ hybrid peptides which show C12/C10 mixed hydrogen bond patterns (Vasudev et al., 2007, 2008a; Chatterjee, Vasudev et al.,2008a). The insertion of gabapentin in the predominantly α-amino acid sequences in Boc-Ala-Aib-Gpn-Aib-Ala-OMe (AUGP5) and Boc-Leu-Gpn-Aib-Leu-Gpn-Aib-OMe results in the observation of helices stabilized by αα C10 (310-turn) and αγ C12 turns. The tetrapeptide Boc-Leu-Gpn-Leu-Aib-OMe reveals a novel conformation, stabilized by C12 (αγ) and C10 (γα) hydrogen bonds of opposite hydrogen bond directionalities. The conformations observed in crystals have been extended to generate C12 helix and C12/C10 helix with alternating hydrogen bond polarities in ( αγ)n sequences. The structure determination of three crystals, providing five molecular conformations, presented in this chapter provides the first crystallographic characterization of two types of helices predicted for the regular αγ hybrid peptides from theoretical calculations. The crystal structure of Boc-Ala-Aib-Gpn-Aib-Ala-OMe also provides an example for the co-existence of left-handed and right-handed helix in the asymmetric unit.
Chapter 6 describes the structural studies of αγ hybrid peptides containing Aib and Gpn residues, and is divided into two parts. The first part presents the crystal structure analysis of peptides of sequence length 2 to 4, with alternating Aib and Gpn residues, and illustrates the conformational variability in αγ hybrid sequences as evidenced by the observation of conformational polymorphs (Chatterjee, Vasudev et al., 2008b; Vasudev et al., 2007; Ananda, Vasudev et al., 2005). The peptide Boc-Gpn-Aib-NHMe (GUN), Boc-Aib-Gpn-Aib-OMe (UGU), Boc-Gpn-Aib-Gpn-Aib-OMe (GU4O), Boc-Aib-Gpn-Aib-Gpn-OMe (UG4O) and Boc-Aib-Gpn-Aib-Gpn-NHMe (UG4N), all of which are potential candidates for exhibiting αγ C12 hydrogen bonds, reveal molecular conformations stabilized by diverse hydrogen bonded turns such as C7, C9, C12 and C17 in crystals. The conformational heterogeneity in this class of hybrid peptides is further evidenced by the observation of three polymorphs in the monoclinic space group P21/c for the tetrapeptide Boc-Aib-Gpn-Aib-Gpn-NHMe (UG4N), providing four independent peptide molecules adopting two distinct backbone conformations. In one polymorph, C12 helices terminated with an unusual three residue ( γαγ) C17 turn is observed, while the unfolding of helical conformation by solvent insertion into the backbone is observed in the other two polymorphs. The studies indicate the possible utility of Gpn residue in stabilizing locally folded conformations in the folding pathway, thus permitting their crystallographic characterization in multiple crystal forms. A discussion of the structural and conformational features of Gpn residues determined from all the crystal structures is presented in the Chapter, along with a φ-ψ plot for the Gpn residue.
Part 2 of Chapter 6 describes the crystal structures of two octapeptides, Boc-Gpn-Aib-Gpn-Aib-Gpn-Aib-Gpn-Aib-OMe (GU8) and Boc-Leu-Phe-Val-Aib-Gpn-Leu-Phe-Val-OMe (LFVUG8), featuring C12 turns at the Aib-Gpn segments (Chatterjee, Vasudev et al., 2009). GU8 folds into a C12 helix flanked by C9 hydrogen bonds at both the termini, while LFVUG8 adopts β-hairpin conformation with a chain-reversing C12 turn at the central Aib-Gpn segment. A remarkable feature of the Aib-Gpn turn in the β-hairpin structure is the anti conformation about the Cβ-Cα (θ2) bond, which is the only example of a Gpn residue not adopting gauche conformation for both θ1 and θ2. The crystal structures of the two peptides, mimicking the two major secondary structural elements of α-peptides in hybrid polypeptides, permits a comparative study of the mode of molecular packing in crystals of α-peptides and hybrid peptides. The chapter also discusses theoretical calculations on αγ hybrid sequences, which reveal new types of C12 hydrogen bonded turns.
Chapter 7 describes the crystal structures of conformationally biased tert-butyl derivatives of Gpn. The crystallographic characterization of the E (trans) and Z (cis) isomers of the residue,three protected derivatives and a tripeptide provides examples of C7 and C9 hydrogen bonded conformations, suggesting that the C7 and C9 hydrogen bonds can be formed by Gpn residues with both the chair conformations of the cyclohexane ring.
Chapter 8 describes the systematic structural studies of the derivatives and peptides of the stereochemically constrained β- amino acid residue, β3,3Ac6c (Vasudev et al., 2008c). The backbone torsion angles φ and θ adopt gauche conformation in majority of the examples, owing to the presence of a cyclohexane ring on the Cβ atom. In contrast to Gpn, β3,3Ac6c does not show strong preference for adopting intramolecularly hydrogen bonded conformations. Of the 16 crystal structures determined, intramolecular hydrogen bonds involving the β-residue are observed only in 4 cases. The amino acid zwitterion (BAC6C), the hydrochloride (BACHCL) and the dipeptide Boc-β3,3Ac6c-β3,3Ac6c-NHMe (BAC62N) form N-H•••O hydrogen bonds with 6-atoms in the hydrogen bond ring (C6 turns). An αβ hybrid C11 hydrogen bonded turn is characterized in the dipeptide Piv-Pro-β3,3Ac6c-NHMe, which is distinctly different from the C11 hydrogen bonds observed in αβ hybrid peptide helices. Several unique structural features such as a dynamic disorder of the hydrogen atom of the carboxylic acid group (in BBAC) and cis geometry of the urethane bond (in BBAC, BAC62N and BPBAC) have been observed in this study. A comparison of the backbone conformations of β3,3Ac6c with other β- amino acid residues is also provided.
Chapter 9 describes the crystallographic characterization of a new polymorph of gabapentin monohydrate and crystal structures of the zwitterions of E and Z isomers of tert-butylgabapentin and its hydrochloride and hydrobromide (Vasudev et al., 2009). A comparison of the crystal structures of the monoclinic form (Ibers, J. A. Acta Crystallogr. 2001, C57, 641-643) of gabapentin monohydrate and the newly characterized orthorhombic form reveals identical molecular conformations and intermolecular hydrogen bond patterns in both the polymorphs. The two polymorphs show differences in the orientation of molecules constituting a layer of hydrophobic interactions between the cyclohexyl side chains. A comparison of the packing arrangements of the zwitterionic amino acid molecules in the crystal structures of gabapentin monohydrate, the tert-butyl derivatives and other co-crystals of gabapentin that had been characterized so far, is provided which would facilitate prediction of new polymorphs of the widely used drug molecule, Gpn.
Chapter 10 describes the crystallization of α-peptide helices in multiple crystal forms (Vasudev et al., 2008b). Crystal structures of two peptides, Boc-Leu-Aib-Phe-Phe-Leu-Aib-Ala-Ala-Leu-Aib-OMe (LFF), Boc-Leu-Aib-Phe-Ala-Leu-Ala-Leu-Aib-OMe (D1) in two crystal forms and the crystal structure of a related sequence, Boc-Leu-Aib-Phe-Ala-Phe-Aib-Leu-Ala-Leu-Aib-OMe (D10) permit an analysis of the molecular conformation and packing patterns of peptide helices in crystals. The two polymorphs of LFF, crystallized in the space groups P21 and P22121, reveal very similar molecular conformation (α/310-helix) in both the polymorphic crystals; the two forms differ significantly in the pattern of solvation. The crystal structure determination of a monoclinic (P21) and an orthorhombic polymorph (P21212) of D1 provides five different peptide conformations, four of which are α-helical and one is a mixed 310/α-helix. The crystal structure determination of the three peptides provide an opportunity to compare the nature and role of aromatic interactions in stabilizing molecular conformation and packing and its significance in the observation of polymorphism. An analysis of the Cambridge Structural Database and a model for nucleation of crystals in
hydrophobic peptide helices are also discussed.
|
7 |
X-ray Crystallographic Characterization Of Designed Peptides Containing Heterochiral And Homochiral Diproline Segments And Database AnalysisSaha, Indranil 07 1900 (has links)
Understanding the relation between amino acid sequences and protein structures is one of the most important problems in modern molecular biology. However, due to the complexities in the protein structure, this task is really daunting. Hence, understanding the structural features of proteins and the rules of folding is central to the design of novel and more effective biomaterials. With the inception of the de novo design of synthetic mimetics for protein structural elements, the study of designed peptides is a subject of intense current research. The de novo design of polypeptide structures provides insights into the factors that govern the folding of peptides and proteins. The rational design of synthetic peptide models for secondary structural motifs in proteins depends on the ability to control the polypeptide chain stereochemistry. An approach, which seems to be useful, is the introduction of constrained genetically coded amino acids like Proline or the introduction of non-protein constrained amino acids like Aib which are capable of restricting the range of available backbone conformations of the polypeptide chain. The use of such residues would then permit the design of well defined and intended structural motifs like the β-turns which serve as chain reversal areas of the polypeptide chain. Templates incorporating multiple repeats of such conformationally constrained residues would in turn further enhance the choice of conformational parameters for the polypeptide chain towards folding. Crystal structure determination of the oligopeptides by X-ray diffraction gives insight into the specific conformational states, modes of aggregation, hydrogen bond interactions and solvation of peptides. Precise structural analysis and good characterization of geometrical parameters and stereochemical details of these molecules provide valuable inputs for peptide design and are indispensable for exploring strategies to design peptide sequences which serve as synthetic mimics for folding motifs in proteins. Many of the above points have been investigated in this thesis which incorporates study of designed peptides containing heterochiral and homochiral diproline segments followed by protein database analysis.
This thesis reports results of x-ray crystallographic studies of twenty two (22) oligopeptides containing heterochiral or homochiral diproline segments. Apart from the crystal data, protein database analysis has also been carried out to investigate what actually is found in nature. Given in brackets are the compound names used in the thesis for the peptides solved.
1) Piv-DPro-LPro-NHMe ( DPPN ) [C16H27N3O3 ] 2) Piv-DPro-LPro-LVal-OMe ( DPPV ) [C21H35N3O5 . 0.09 H2O] 3) Piv-DPro-LPro-LPhe-OMe ( DPPF ) [C25H35N3O5 . H2O] 4) Piv-DPro-LPro-DAla-OMe ( DPPDA ) [C19H31N3O5] 5) Piv-LPro-DPro-LAla-OMe ( PDPA ) [C19H31N3O5] 6) Piv-DPro-LPro-LVal-NHMe ( DPPVN ) [C21H36N4O4 . H2O] 7) Piv-DPro-LPro-LLeu-NHMe ( DPPLN ) [C22H38N4O4 . 0.34H2O] 8) Piv-DPro-LPro-LPhe-NHMe ( DPPFN ) [C25H36N4O4 . H2O] 9) Piv-DPro-LPro-Aib-NHMe ( DPPUN ) [C20H34N4O4] 10) Piv-DPro-LPro-DAla-NHMe ( DPPDAN ) [C19H32N4O4] 11) Piv-DPro-LPro-DVal-NHMe ( DPPDVN ) [C21H36N4O4 .1.43 H2O] 12) Piv-DPro-LPro-DLeu-NHMe ( DPPDLN ) [C22H38N4O4 . H2O] 13) Piv-LPro-DPro-LAla-NHMe ( PDPAN ) [C19H32N4O4] 14) Piv-LPro-DPro-LVal-NHMe ( PDPVN ) [C21H36N4O4] 15) Piv-LPro-DPro-LLeu-NHMe ( PDPLN ) [C22H38N4O4 . H2O] 16) Piv-LPro-DPro-LVal-OMe ( PDPVO ) [C21H35N3O5 . H2O] 17) Racemic mixture of Piv-DPro-LPro-DVal-NHMe + Piv-LPro-DPro-LVal-NHMe
( PPVVN ) [C21H36N4O4 . 0.74H2O] 18) Racemic mixture of Piv-DPro-LPro-DLeu-NHMe + Piv-LPro-DPro-LLeu-NHMe ( PPLLN ) [C22H38N4O4 . H2O] 19) Racemic mixture of Piv-DPro-LPro-DPhe-NHMe + Piv-LPro-DPro-LPhe-NHMe
( PPFFN ) [C25H36N4O4 . 2 H2O] 20) Piv-LPro-LPro-LPhe-OMe ( PPFO ) [C25H35N3O5 . 0.5 H2O] 21) Piv-LPro-LPro-LVal-NHMe ( PPVN ) [C21H36N4O4 . H2O] 22) Piv-LPro-LPro-Aib-NHMe ( PPUN ) [C20H34N4O4. H2O]
Results from the X-ray crystallographic analysis of the above peptides provided substantial information regarding role of diproline templates on the folding of the polypeptide chain.
The thesis is divided into the following eight chapters :
Chapter 1 gives a general introduction to the stereochemistry of polypeptide chains and the secondary structure classification: helices, β-sheets and β-turns. This section also provides a brief overview of the use of non standard and D-amino acids into peptide design. Discussions on DProline, puckering states of the Proline ring, diproline segments and racemic mixtures of peptides are also presented. A brief discussion on X-ray diffraction and solution to the phase problem is also given.
Chapter 2 describes the structural characterization in crystals of the five following designed peptides: Piv-DPro-LPro-NHMe (DPPN), Piv-DPro-LPro-Xxx-OMe [Xxx = LVal (DPPV); LPhe (DPPF); DAla (DPPDA)] and Piv-LPro-DPro-LAla-OMe (PDPA) containing the heterochiral diproline segment with an aim towards understanding the directive influence of
short range interaction on polypeptide folding. Except PDPA, in all the structures, a type II’ β-turn was observed at the DPro-LPro segment with the formation of a 4→1 intramolecular hydrogen bond between the atoms of the polypeptide backbone. In PDPA, the expected type II β-turn occurred at the LPro-DPro segment. Thus, the DPro-LPro segment preferably adopts a
type II’ β-turn conformation when present at the C-terminus which is mimicked by the methyl ester group. The use of pivalyol group at the N-terminus is to ensure the trans geometry of the peptide bond between pivalyol and the first Proline.
Crystal parameters
DPPN: C16H27N3O3; P21; a = 10.785(1) Å, b = 15.037(1) Å, c = 11.335(1) Å; β = 109.96(1)°;
Z = 4; R = 0.0388, wR2 = 0.1047.
DPPV: C21H35N3O5 . 0.09 H2O; P212121; a =10.676(1) Å, b = 16.608(1) Å, c = 39.887(1) Å, Z = 12; R = 0.0688, wR2 = 0.1701.
DPPF: C25H35N3O5 . H2O; P21; a = 9.538(1) Å, b = 10.367(1) Å, c = 13.102(1) Å; β = 93.04(1) °; Z = 2; R = 0.0504, wR2 = 0.1455.
DPPDA: C19H31N3O5; P21; a = 11.269(1) Å, b = 9.945(1) Å, c = 18.550(2) Å; β = 97.46(1)°; Z = 4; R = 0.0563, wR2 = 0.1249.
PDPA: C19H31N3O5; P212121; a = 9.043(1) Å, b = 10.183(2) Å, c = 23.371(1) Å; Z = 4; R = 0.0753, wR2 = 0.1603.
Chapter 3 describes the crystal structures of the four following designed peptides containing the heterochiral diproline segment followed by a L-residue or an achiral amino acid residue like Aib : Piv-DPro-LPro-Xxx-NHMe [Xxx = LVal (DPPVN); LLeu (DPPLN); LPhe (DPPFN) and Aib (DPPUN)]. In the first three peptides the DPro-LPro segennt adopts a type II’ β-turn conformation with the formation of a type I β-turn at the LPro-Xxx segment. The peptide backbone overall therefore adopts a consecutive β-turn structure. When the L-amino acids at the C-terminus are replaced by the achiral amino acid Aib, the overall folded structure adopted by the peptide backbone still remains unchanged with the formation of a consecutive
β-turn. All the structures are stabilized by two intramolecular 4→1 hydrogen bonds between the C=O group and the nitrogen atom of the polypeptide backbone.
Crystal parameters
DPPVN: C21H36N4O4 . H2O; P21; a = 9.386(1) Å, b = 12.112(1) Å, c = 10.736(1) Å; β = 99.53(1) °; Z = 2; R = 0.0528, wR2 = 0.1337.
DPPLN: C22H38N4O4 . 0.34H2O; P21; a =9.231(1) Å, b = 17.558(1) Å, c = 15.563(1) Å; β = 91.94(1) °; Z = 4; R = 0.0555, wR2 = 0.1422.
DPPFN: C25H36N4O4 . H2O; P212121; a = 10.473(1) Å, b = 15.980(1) Å, c = 15.994(1) Å; Z = 4; R = 0.0620, wR2 = 0.1826.
DPPUN: C20H34N4O4; P212121; a = 10.571(2) Å, b = 11.063(1) Å, c = 18.536(1) Å; Z = 4; R = 0.0578, wR2 = 0.1256.
Chapter 4 describes the crystal structures of the seven designed peptides containing
heterochiral diproline segment. Three of these contain sequences of the type DPro-LPro-DXxx [DXxx = DAla (DPPDAN); DVal (DPPDVN); DLeu (DPPDLN)] and three contains the enantiomeric peptides of the ones that are mentioned earlier in sequences of the type LPro-DPro-LXxx [LXxx = LAla (PDPAN); LVal (PDPVN); LLeu (PDPLN)]. In order to investigate the effect of the C-terminal protecting group, a final peptide Piv-LPro-DPro-LVal-OMe (PDPVO) was crystallographically characterized. All the peptides containing the DXxx residues adopted different backbone conformations. For DAla, a structure simultaneously having a β-turn and an α-turn was obtained which is the first example in designed peptides of an isolated α-turn. In the case of DVal, an open / extended structure devoid of any intramolecular hydrogen bonding was obtained whereas for DLeu, type II β-turn occurred at the LPro-DLeu segment instead of the expected type II’ turn at the DPro-LPro segment. In the case of enantiomeric peptides, all the three peptides adopted folded structures with exact mirror image conformation being generated for LAla and nearly identical mirror image conformation in the case of LLeu. The enantiomeric peptide of DVal which contained LVal residue following the diproline segment also adopted a folded conformation with the
formation of type II β-turn at the LPro-DPro segment as expected. X-ray crystallographic characterization of PDPVO resulted in the peptide adopting an overall extended / open structure. Thus, the chirality of the C-terminal residue seems to have a profound effect on the conformation of the heterochiral diproline segments. The role of the C-terminal protecting group cannot also be undermined.
Crystal parameters
DPPDAN: C19H32N4O4; P1; a = 5.964(1) Å, b = 9.354(1) Å, c = 9.961(1) Å; α = 75.44(1), β = 78.90(1) °, γ = 77.04(1); Z = 1; R = 0.0728, wR2 = 0.1528.
DPPDVN : C21H36N4O4 .1.43 H2O; P212121; a = 8.744(8) Å, b = 11.609(1) Å, c = 23.577(2)
Å; Z = 4; R = 0.0625, wR2 = 0.1856.
DPPDLN : C22H38N4O4 . H2O; P212121; a = 10.531(3) Å, b = 11.659(3) Å, c = 20.425(6) Å; Z = 4; R = 0.0444, wR2 = 0.1239.
PDPAN: C19H32N4O4; P1; a = 5.964(1) Å, b = 9.354(2) Å, c = 9.961(2) Å; α = 75.44(1), β = 78.90(1) °, γ = 77.04(1); Z = 1; R = 0.0745, wR2 = 0.1572.
PDPVN : C21H36N4O4; P212121; a = 9.743(1) Å, b = 11.423(1) Å, c = 21.664(3) Å; Z = 4; R = 0.0803, wR2 = 0.1899.
PDPLN : C22H38N4O4 . H2O; P212121; a = 10.462(4) Å, b = 11.572(4) Å, c = 20.262(7) Å; Z = 4; R = 0.0968, wR2 = 0.2418.
PDPVO : C21H35N3O5 . H2O; P212121; a = 8.784(4) Å, b = 11.587(5) Å, c = 23.328(1) Å; Z = 4; R = 0.0888, wR2 = 0.1465.
Chapter 5 describes the crystal structures of the three designed peptides containing racemic mixtures [Racemic mixture of Piv-DPro-LPro-DVal-NHMe + Piv-LPro-DPro-LVal-NHMe (PPVVN); Racemic mixture of Piv-DPro-LPro-DLeu-NHMe + Piv-LPro-DPro-LLeu-NHMe (PPLLN); Racemic mixture of Piv-DPro-LPro-DPhe-NHMe + Piv-LPro-DPro-LPhe-NHMe (PPFFN)] having the heterochiral diproline segment in their sequences and three peptides having a homochiral diproline segment [Piv-LPro-LPro-LPhe-OMe (PPFO); Piv-LPro-LPro-LVal-NHMe (PPVN); Piv-LPro-LPro-Aib-NHMe (PPUN)]. The inability of the pure enantiomers to crystallize in the case of Phe (chapter 4) invoked the use of peptide racemates for obtaining a crystal state conformation for the said compound. In all the cases, the L-enantiomer of Xxx crystallized in the asymmetric unit. A type II β-turn was obtained in the case of PPVVN at the LPro-DPro segment and a type II’ β-turn was obtained for PPLLN at the DPro-LLeu segment. in the case of Phe, an open structure devoid of any intermolecular hydrogen bonding an very similar to DPPDVN (chapter 4) was obtained. In the case of homochiral diproline segment containing peptides, PPFO crystallized with two molecules in the asymmetric unit, both of which adopted a type VIA1 hydrogen bonded β-turn conformation with a cis peptide bond between the diproline segment. In the case of Valine (PPVN) however, a structure devoid of any intramolecular hydrogen bonding was obtained. In the final peptide PPUN, a type II β-turn conformation is observed at the LPro-Aib segment. The analysis revealed that the hydration of the peptide can cause dramatic changes in its backbone conformation. In homochiral LPro-LPro sequences, the tendency to form hydrogen bonded turns competes with the formation of semi-extended polyproline structures. The results also emphasize the subtle role of sequence effects in modulating the conformations of short, constrained peptide segments. The possibility of trapping distinct conformational segments of the diproline segments in crystals by generating racemic centro-symmetric crystals in which packing effects may be appreciably different from those observed in the crystals of individual pure enantiomeric peptides has been clearly exploited in this chapter to obtain a crystal in the case of Phe. These results suggest that the energetic differences between these states is small. Conformational choice can therefore be readily influenced by environmental and sequence effects. Crystal parameters PPVVN: C21H36N4O4 . 0.74H2O; C2/c; a = 36.667(17) Å, b = 10.092(5) Å, c = 13.846(6) Å; β = 107.27(1) °; Z = 8; R = 0.1317, wR2 = 0.3141. PPLLN: C22H38N4O4 . H2O; P21/c; a = 10.555(1) Å, b = 11.687(1) Å, c = 20.108(2) Å; β = 95.47(1) °; Z = 4; R = 0.0761, wR2 = 0.2034. PPFFN: C25H36N4O4 . 2 H2O; P21/c; a = 8.883(5) Å, b = 18.811(10) Å, c = 16.033(9) Å; β = 96.28(1) °; Z = 4; R = 0.1218, wR2 = 0.2848. PPFO : C25H35N3O5 . 0.5 H2O; P212121; a = 10.199(1) Å, b = 20.702(2) Å, c = 23.970(2) Å; Z = 8; R = 0.0716, wR2 = 0.1901.
PPVN : C21H36N4O4 . H2O; P212121; a = 9.454(1) Å, b = 11.119(1) Å, c = 23.021(2) Å; Z = 4;
R = 0.0551, wR2 = 0.1587.
PPUN: C20H34N4O4. H2O; P21; a = 6.276(1) Å, b = 14.011(2) Å, c = 12.888(1) Å; β =
96.80(1) °; Z = 2; R = 0.0475, wR2 = 0.1322.
Chapter 6 describes the pyrrolidine ring puckering states of the Proline residue present in diproline segments in the peptides solved in this thesis, the Cambridge structural database
(CSD) [only acyclic diproline containing peptides have been taken into account] and in a non-redundant dataset of proteins in the Protein Data Bank (PDB). The five membered pyrrolidine ring of Proline can be best characterized in terms of the following five endocyclic torsion
angles χ1, χ2, χ3,χ4 and θ. Using various values of these endocyclic torsion angles the following puckering states were identified : [1] Cγ-exo (A) [2] Cγ-endo (B) [3] Cβ-exo (C) [4] Cβ-endo (D) [5] Twisted Cγ-exo-Cβ-endo (E) [6] Twisted Cγ-endo-Cβ-exo (F) [7] Planar (G) [8] Cα-distorted (H) [9] Twisted Cβ-exo-Cα-endo (I) [10] Cδ-endo (K) [11] N-distorted (L) [12] Twisted Cδ-endo- Cγ-exo (N). In the case of peptides solved in this thesis for heterochiral diproline segments, the Cγ-exo / Cβ-exo (AC) combination turns out to more preferred than the other combinations. The Cγ-endo / Cγ-endo (BB) state is the second most populated state. The overall investigation of Proline rings in peptides show that the states Cγ-exo (A), Cβ-exo
(C) and Twisted Cγ-endo-Cβ-exo (F) are the most preferred states of occurrence of the pyrrolidine ring conformation. In the case of proteins, the overall percentage distribution of various combinations indicates that the AA (Cγ-exo / Cγ-exo), AE (Cγ-exo / Twisted Cγ-exo-Cβ-endo) and FF (Twisted Cγ-endo-Cβ-exo / Twisted Cγ-endo-Cβ-exo) categories are the most preferred combinations. For Proline rings in proteins, the states Cγ-exo (A), Twisted Cγ-exo-Cβ-endo (E) and Twisted Cγ-endo-Cβ-exo (F) are the most preferred states of occurrence of the pyrrolidine ring conformation.
Chapter 7 describes the analysis of diproline segments in a non-redundant dataset of proteins In this chapter, the possible conformational states for the diproline segment (LPro-LPro) found in proteins taken from a non-redundant dataset has been investigated an identified with an emphasis on the cis and trans states for the peptide bond between the diproline segment. The occurrence of diproline segments in type VIA1 turns (cis Pro-Pro peptide bond) and other regular secondary structures like type III β-turns and α-helices has been studied. This has been followed up by the amino acid distribution flanking the diproline segment and the conformation adopted by Xaa-Pro and Yaa-Pro segments in proteins. It is observed that for cis Pro-pro peptide bond, the conformation adopted by the first Proline lies in PII region whereas the second Proline inevitably adopts a conformation in the Bridge region, leading to the formation of the type VIA1 β-turn structure. But in the trans case, the conformation adopted by the first Proline is overwhelmingly populated in the PII (Polyproline) and right-handed α-helical region. For position i+2, the major conformation adopted by Proline is P II and α with a substantial amount of occurrences in Bridge and the C7 (γ-turn) region. The analysis also reveals that the cis-cis configuration of the peptide bond is very rare when considering the diproline segment. With a cis-trans peptide linkage, PII-PII conformation is the most stable and favoured conformation for the Pro-Pro segment in proteins. With trans peptide bond linkage between the Proline residues, α- α and PII-Bridge conformations are equally likely for the diproline segment. The population in trans-cis and cis-trans states are comparable indicating that the energy differences between these states is small. However, trans-trans is the most populated state with a percentage occurrence of 85.43%. The analysis and comparison of conformational states for the Xaa-Pro-Yaa sequence reveals that the Xaa-Pro peptide bond exists preferably as the trans conformer rather than the cis conformer. The same is valid for Pro-Yaa segment, with the cis conformer being populated to even lesser extent. The data shows that α- α, PII-α, PII-PII and extended-PII are the most populated states for Xaa-Pro and Pro-Yaa segments as compared to PII-PII and PII-α and states observed for the Pro-Pro segment.
Chapter 8 describes the analysis of single and multiple β-turns in a non-redundant dataset of proteins. The analysis on β-turns in proteins has shed a new light into the propensity values for amino acid residues at various positions of β-turns which in certain cases have undergone appreciable change in values than previously observed. One of the other notable feature of the analysis is the fact that the data displays a higher occurrence of unprimed β-turns of type I and type II as compared to their primed counterparts of type I’ and type II’ as previously observed. In fact, the results show that type I β-turn is the highest occurring turn both in isolated as well as in consecutive β-turn examples. The analysis of multiple β-turns in proteins has revealed many new categories like the (I,I+1,I+3), (I,I+2,I+3) and combination of turns which can be used for the design of the loops, especially in the case of β-hairpins. Among the multiple turns, double turns occur more frequently than the other consecutive turns like triple and quadruple turns. It is also important to note that the number of examples of a hydrogen bonded turn being followed by a hydrogen bonded turn is very less with type IV turn preceding a primed turn in most of the cases. Thus, the data available from consecutive β-turn analysis and the type-dependent amino acid positional preferences and propensities derived from the present study may be useful for modeling various single and consecutive turns, especially in designing loop regions of β-hairpins.
|
8 |
Designed β-Hairpin, β-Sheet And Mixed α-β Structures In Synthetic PeptidesDas, Chittaranjan 10 1900 (has links)
Synthetic construction of protein molecules has been widely pursued over the last two decades. A primary goal behind de novo protein design has been to build minimal systems by capturing the essential features of protein structures. Such minimal models can be used to understand underlying principles governing folding, structure, and function of proteins molecules. Several approaches envisioning successful construction of synthetic proteins have been described over the years, some of them being admirably successful (DeGrado et al, 1999; Richardson et al> 1992; Baltzer, 1998). Specific patterning of polar and apolar residues in synthetic sequences has been widely used to achieve designed polypeptide structures like helix bundles (DeGrado et ah, 1999) and (3-sheets (Smith and Regan, 1997; Lacroix et a/., 1998), with reliance on hydrophobic driving forces for folding. Our laboratory has been pursuing a distinctly alternative approach, that employs stereochemically constrained amino acids to generate specific secondary structures which can then be assembled into composite structures by appropriately chosen linking segments. This approach, which involves linking prefabricated modules of secondary structures can be termed as a "Meccano set" approach to protein design (Balaram, 1992). The studies embodied in the present thesis describe attempts at construction of synthetic polypeptide motifs using the stereochemically directing influence of conformationally constrained amino acid residues, such as DPro or Aib (α-aminoisobutyric acid). This thesis is subdivided into 8 chapters, with Chapter 1 providing a perspective of the field of protein design. Subsequent chapters (2-8) describe studies directed towards the specific goal of construction of polypeptide motifs.
Chapter 2 describes synthesis and conformational characterization of two octapeptides Boc-Leu-Val-Val-DPro-LAla-Leu-Val-Val-OMe (1) and Boc-Leu-Val-Val-DPro-DAla-Leu-Val-Val-OMe (2), designed to investigate the effect of specific β-turn stereochemistry on β-hairpin structures. 500 MHz NMR studies establish that both peptides 1 and 2 adopt predominantly β-hairpin conformations in chloroform and methanol solutions, with interstrand registry established by observation of long-range nuclear Overhauser effects (NOEs). Specific NOEs provide evidence for a type II' β-turn conformation for the DPro-LAla segment in 1, while the NMR data suggest that a type I' DPro-DAla β-turn conformation predominates in the peptide 2. The crystal structure of 1 reveals two independent molecules in the crystallographic asymmetric unit, both of which adopt β-hairpin conformations nucleated by a type II’ β-turn across DPro-LAla and stabilized by 3 cross strand hydrogen bonds. These designed β-hairpins with defined tight turns produce characteristic vibrational circular dichroism (VCD) patterns, demonstrating the utility of VCD as a probe for conformational analysis of β-hairpins.
In Chapter 3, we present conformational analysis on designed β-hairpin sequences incorporating a 'Phe-Phe' residue pair at a non-hydrogen bonding position. Two octapeptides Boc-Leu-Phe-Val-DPro-Gly-Leu-Phe-Val-OMe and Boc-Leu-Phe-Val-DPro-Ala-Leu-Phe-Val-OMe were synthesized and conformationally characterized by 500 MHz NMR spectroscopy. Specific NOEs observed in solution provide conclusive evidence favoring specific orientation effects pertaining to the 'Phe-Phe' pair. The peptides exhibited anomalous electronic CD, which has been explained in terms of aromatic contributions by the side chain chromophores. Interestingly, the VCD patterns obtained for these peptides were almost identical to those obtained for other β-hairpins, described in Chapter 2.
Chapter 4 describes the synthesis and conformational analysis of designed decapeptide sequences with centrally located DPro-Xxx β-trun segments. Two sequences Boc-Met-Leu»Phe-Val'DPro-Ala-Leu-Val-Val-Phe-OMe (1) and Boc-Met-Leu-Val-Val-^ro-Gly-Leu-Val-Val-Phe-OMe (2) were designed to study the effect of chain length elongation, of β-strands, on designed β-hairpin structures. 500 MHz NMR studies establish β-hairpin folds in both these sequences, with strand segments aligned even at the termini of the structures.
Multi-stranded, antiparallel β-sheet structures can be generated by successive placement of β-hairpin sequences in a single polypeptide chain. The successful construction of three stranded β-sheet structures is described in Chapter 5 of this dissertation. A 14-residue peptide Boc-Leu-Phe-Val-DPro-Gly-Leu-Val-Leu-Ala-DPro-Gly-Phe-Val-Leu-OMe (LFV14) was designed such that it is composed of three strand segments linked by two DPro-Gly turn segments. The peptide showed excellent solubility in apolar media, permitting detailed conformational analysis by 500 MHz NMR spectroscopy in organic solvents. Observation of long-range, interstrand NOEs, diagnostic of multiple hairpin structures, provides conclusive evidence for a predominantly populated three stranded β-sheet structure in solution. Extension of this strategy has been described in which an 18-residue peptide, Arg-Gly-Thr-Ile-Lys-DPro-Gly-Val-Thr-Phe-Ala-DPro-Ala-Thr-Lys-Tyr-Gly-Arg, was designed with enhanced solutility in water to probe (β-sheet structure formation in aqueous and mixed aqueous-methanol systems. NMR data provided conclusive evidence in favor of the desired structure being significantly populated in methanol and methanol-water mixtures (50 %, v/v). In water, spectroscopic evidence suggests that the long-range order expected of a three-stranded structure is lost, possibly due to water invading the interstrand hydrogen bonds.
Successful construction of a four-stranded antiparallel β-sheet structure has been
demonstrated in Chapter 6. A 26-residue peptide Arg-Gly-Thr-Ile-Lys»DPro-Gly-Ile-Thr-
Phe-Ala-DPro-Ala-Thr-Val-Leu-Phe-Ala-Val-DPro-Gly-Lys-Thr-Leu-Tyr-Arg was designed to have four strand segments linked by three DPro-Xxx turn segments. The peptide exhibited excellent NMR properties permitting structure determination by analysis of NOE data, which revealed that a four stranded β-sheet structure is indeed populated in methanol. Structural studies on this peptide in mixed methanol-water established that the four stranded β-sheet is appreciably populated at a composition of 50 % (v/v) methanol-water mixture, with the β-sheet structure still detectable even at a composition of 70 % water-30 % methanol. In a completely aqueous environment, the β-sheet structures is significantly disrupted, presumably due to solvent invasion. The nucleating β-turns, however, appear to have retained their structural integrity even in this competitive environment.
Chapter 7 describes the insertion of L-Lactic acid (Lac), a hydroxy acid, into polypeptide helices stabilized by a-aminoisobutyricacid (Aib). This study was undertaken to investigate the effect of hydrogen bond deletion on peptide helices. Crystal structure determination of three oligopeptides containing Lac residues has been performed. Peptide 1, Boc-Val-Ala-Leu-Aib-Val-Lac-Leu-Aib-Val-Ala-Leu-OMe, and peptide 2, Boc-Val-Ala-Leu-Aib-Val-Lac-Leu-Aib-Val-Leu-OMe adopt completely helical conformations in the crystalline state, with the Lac(6) residue comfortably accommodated in the center of a helix. NMR studies of peptide 1 and its all amide analog 4, Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-Aib-Val-Ala-Leu-OMe, provide firm evidence for a continuous helical segment in both the cases. In a 14-residue peptide 3, Boc-Val-Ala-Leu-Aib- Val- Ala-Leu- Val- Ala-Leu- Aib-Val-Lac-Leu-OMe, residues Val( 1 )-Leu( 10) adopt a helical conformation, which is terminated by formation of a Schellman motif, with Aib(ll) as the site of chiral reversal. The loss of the hydrogen bond at the C-terminus appears to facilitate the chiral reversal at Aib(l 1).
In the final section of this thesis, Chapter 8, successful construction of a synthetic motif containing two distinct elements of secondary structure, a (β-hairpin and a helix, has been described. The design of a 17-residue peptide Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-Gly-Gly-Leu-Phe-Val-DPro-Gly-Leu-Phe-Val-OMe, BH17, is based on a modular approach, in which previously characterized β-hairpin (Leu-Phe-Val-DPro-Gly-Leu-Phe-Val) and helix (Val-Ala-Leu-Aib-Val-Ala-Leu) modules are linked by a Gly-Gly linker. The positioning of the achiral Gly residue at position 8 facilitates termination of the potential helical segment (residues 1-7) by formation of a Schellman motif. Gly(9) is anticipated to be the sole conformationally flexible residue. NMR studies on BH17 indicated the presence of both the helix (residues 1-7) and the β-hairpin (residues 10-17) structures in the sequence, with four major conformational possibilities at the linking segment. Crystal structure determination of BH17 revealed that the two elements of structure are approximately arranged in an orthogonal fashion. The crystal structure validates the original premise that a modular assembly strategy may be viable for the construction of larger synthetic structures.
Chapter 9 summarises the major results of this thesis.
(For formulae, please refer "pdf" format)
|
9 |
Design, Synthesis And Conformational Analysis Of Peptides Containing Omega And D-Amino AcidsRaja, K Muruga Poopathi 06 1900 (has links) (PDF)
No description available.
|
10 |
Conformational Analysis of Designed and Natural Peptides : Studies of Aromatic/Aromatic and Aromatic/Proline Interactions by NMRSonti, Rajesh January 2013 (has links) (PDF)
This thesis describes NMR studies which probe weak interactions between amino acid side chains in folded peptide structures. Aromatic/aromatic interactions between facing phenylalanine residues have been probed in antiparallel β-sheets, while aromatic/proline interactions have been examined using cyclic peptide disulfides that occur in the venom of marine cone snails. Novel intramolecular hydrogen bonded structures in hybrid peptides containing backbone homologated residues, specifically γ-amino acids, are also described.
Chapter 1 provides a brief background to the principles involved in the design of antiparallel β-sheet structures and an introduction to previous studies on aromatic/aromatic and aromatic/proline interactions in influencing peptide conformations. A summary of the NMR methods used is also presented. Chapter 2 discusses the structural characterisation of a designed 14 residue, three stranded β-sheet peptide, Boc-LFVDP-PLFVADP-PLFV-OMe (LFV14). The results described in this Chapter support the presence of multiple conformational states about the χ1 (Cα-Cβ) torsional degree of freedom for the interacting aromatic pairs in solution. Chapter 3 presents the structural characterisation of a designed 19 residue three stranded hybrid β-sheet peptide, Boc-LVβFVDPGLβFVVLDPGLVLβFVV-OMe (BBH19). β-amino acid residues (β-phenylalanine, βPhe) were incorporated at facing positions on antiparallel β-sheets. The BBH19 structure provides an example of interaction between the N and C-terminal strands in a three stranded structure with an α/β hybrid backbone. Chapter 4 focuses on studies of the conformations of the contryphan In936 (GCVDLYPWC*) from Conus inscriptus and the related peptide Lo959 (GCPDWDPWC*) from Conus loroissi. Both peptides possess a macrocyclic 23 membered ring, with multiple accessible conformational states. Chapter 5 describes conformational analysis of a novel 20 membered cyclic peptide disulfide, CIWPWC (Vi804), from Conus virgo. NMR structures were calculated for Vi804 and an analog peptide, CIDWPWC, DW3-Vi804. Chapter 6 explores the solution conformation of hybrid sequences containing α and γ residues. Oligopeptides of the type (αγ)n and (αγγ)n have been studied in solution by NMR methods. Chapter 7 provides a summary of the results described in this thesis and highlights the major conclusions.
|
Page generated in 0.0608 seconds