Spelling suggestions: "subject:"betazelle"" "subject:"betacelle""
1 |
Effekte von Adipozytokinen auf INS-1E Beta-ZellenSpinnler, Robert 23 October 2014 (has links) (PDF)
ABSTRACT
Aims/hypothesis: Obesity is associated with a dysregulation of beta-cell and adipocyte function. The molecular interactions between adipose tissue and beta-cells are not yet fully elucidated. We investigated, whether or not the adipocytokine nicotinamide phosphoribosyltransferase (Nampt), which has been associated with obesity and type 2 diabetes mellitus (T2DM) directly influences beta-cell survival and function.
Methods: The effect of Nampt on viability of INS-1E cells was assessed by WST-1 assay. Apoptosis was measured by Annexin V/PI and TUNEL assay. Activation of apoptosis signaling pathways was evaluated. Adenylate kinase release was determined to assess cytotoxicity. Chronic and acute effects of the adipocytokine Nampt and its enzymatic product nicotinamide mononucleotide (NMN) on insulin secretion were assessed by glucose stimulated insulin secretion in human islets.
Results: While stimulation of beta-cells with the cytokines IL-1β, TNFα and IFN-γ or palmitate significantly decreased viability, Nampt showed no direct effect on viability in INS-1E cells or in human islets, neither alone nor in the presence of pro-diabetic conditions (elevated glucose concentrations and palmitate or cytokines). At chronic conditions over 3 days of culture, Nampt and its product NMN had no effects on insulin secretion. In contrast, both Nampt and NMN potentiated glucose stimulated insulin secretion acutely during 1h incubation of human islets.
Conclusion/interpretation: Nampt did influence neither beta-cell viability nor apoptosis but acutely potentiated glucose stimulated insulin secretion.
|
2 |
Einfluss von Glucolipotoxizität auf die Funktion der β-Zellen diabetessuszeptibler und –resistenter Mausstämme / Effects of glucolipotoxicity on beta-cells of diabetes-susceptible and diabetes-resistant mouse strainsKluth, Oliver January 2012 (has links)
Ziel der vorliegenden Arbeit war es, die Auswirkungen von Glucose- und Lipidtoxizität auf die Funktion der β-Zellen von Langerhans-Inseln in einem diabetesresistenten (B6.V-Lepob/ob, ob/ob) sowie diabetessuszeptiblen (New Zealand Obese, NZO) Mausmodell zu untersuchen. Es sollten molekulare
Mechanismen identifiziert werden, die zum Untergang der β-Zellen in der NZO-Maus führen bzw. zum Schutz der β-Zellen der ob/ob-Maus beitragen. Zunächst wurde durch ein geeignetes diätetisches Regime in beiden Modellen durch kohlenhydratrestriktive Ernährung eine Adipositas(Lipidtoxizität) induziert und anschließend durch Fütterung einer kohlenhydrathaltigen Diät ein Zustand von Glucolipotoxizität erzeugt. Dieses Vorgehen erlaubte es, in der NZO-Maus in einem kurzen Zeitfenster eine Hyperglykämie sowie einen β-Zelluntergang durch Apoptose auszulösen. Im Vergleich dazu blieben ob/ob-Mäuse längerfristig normoglykämisch und wiesen keinen β-Zelluntergang auf. Die Ursache für den β-Zellverlust war die Inaktivierung des Insulin/IGF-1-Rezeptor-Signalwegs, wie durch Abnahme von phospho-AKT, phospho-FoxO1 sowie des β-zellspezifischen
Transkriptionsfaktors PDX1 gezeigt wurde. Mit Ausnahme des Effekts einer Dephosphorylierung von FoxO1, konnten ob/ob-Mäuse diesen Signalweg aufrechterhalten und dadurch einen Verlust von β-Zellen abwenden. Die glucolipotoxischen Effekte wurden in vitro an isolierten Inseln beider Stämme
und der β-Zelllinie MIN6 bestätigt und zeigten, dass ausschließlich die Kombination hoher Glucose und Palmitatkonzentrationen (Glucolipotoxizität) negative Auswirkungen auf die NZO-Inseln und MIN6-Zellen hatte, während ob/ob-Inseln davor geschützt blieben. Die Untersuchung isolierter Inseln ergab, dass beide Stämme unter glucolipotoxischen Bedingungen keine Steigerung der Insulinexpression aufweisen und sich bezüglich ihrer Glucose-stimulierten
Insulinsekretion nicht unterscheiden. Mit Hilfe von Microarray- sowie immunhistologischen Untersuchungen wurde gezeigt, dass ausschließlich ob/ob-Mäuse nach Kohlenhydratfütterung eine kompensatorische transiente Induktion der β-Zellproliferation aufwiesen, die in einer nahezu Verdreifachung der Inselmasse nach 32 Tagen mündete. Die hier erzielten Ergebnisse lassen die Schlussfolgerung zu, dass der β-Zelluntergang der NZO-Maus auf eine Beeinträchtigung des Insulin/IGF-1-Rezeptor-Signalwegs sowie auf die Unfähigkeit zur β- Zellproliferation zurückgeführt werden kann. Umgekehrt ermöglichen der Erhalt des Insulin/IGF-1-Rezeptor-Signalwegs und die Induktion der β-Zellproliferation in der ob/ob-Maus den Schutz vor einer Hyperglykämie und einem Diabetes. / The aim of the project was to investigate the impact of glucose- and fatty acid toxicity on β-cell function in a diabetes susceptible (New Zealand Obese, NZO) and resistant (B6.V-Lepob/ob, ob/ob)mouse model. Specifically, the molecular mechanisms of glucolipotoxicity-induced β-cell failure in the NZO mouse and pathways which contribute to protection of ob/ob mice against diet-induced
type 2 diabetes should be elucidated. First, the animals were fed a fat-enriched carbohydrate-free diet which resulted in severe obesity and insulin resistance (lipotoxicity). Subsequently, mice were exposed to a carbohydrate-containing diet to induce conditions of glucolipotoxicity. This sequential dietary regimen provides a convenient method to induce rapid hyperglycaemia with β-cell destruction by apoptosis in a short time frame in NZO mice. In contrast, long-term exposure of ob/ob mice to the same dietary regimen leads to normoglycaemia and a protection against β-cell failure. The molecular mechanism behind
carbohydrate-mediated β-cell destruction in NZO mice was an inactivation of the insulin/IGF-1 receptor signaling pathway including loss of phospho-AKT, phospho-FoxO1 and of the β-cell specific transcription factor PDX1. With the exception of FoxO1-dephosphorylation, ob/ob mice maintained this survival pathway and therefore were protected against loss of β-cells. The adverse effects of
glucolipotoxicity on β-cells were verified in vitro by treatment of isolated NZO-islets and MIN6-cells under glucolipotoxic conditions. Only the combination of high glucose in the presence of palmitate caused deterioration of NZO-islets and MIN6-cells whereas ob/ob-islets were protected. The investigation of the insulin expression pattern showed, that glucolipotoxic conditions inhibited a
glucose-induced increase in insulin expression in both, NZO and ob/ob islets. Furthermore, NZO and ob/ob-islets did not differ in glucose-stimulated insulin secretion. Expression profiling and immunohistochemical analyses of islets from NZO and ob/ob mice before and after carbohydrate intervention revealed a transient induction of a compensatory β-cell proliferation. During a 32 day
carbohydrate feeding islet mass of ob/ob mice increased almost 3-fold.
In conclusion, β-cell failure in NZO mice was induced via impairment of the insulin/IGF-1 signaling pathway and the inability to adequately increase β-cell mass by proliferation. Conversely, maintenance of the insulin/IGF-1 receptor signaling pathway and the induction of β-cell proliferation protected ob/ob mice against hyperglycaemia and type 2 diabetes.
|
3 |
Effekte von Adipozytokinen auf INS-1E Beta-ZellenSpinnler, Robert 27 August 2014 (has links)
ABSTRACT
Aims/hypothesis: Obesity is associated with a dysregulation of beta-cell and adipocyte function. The molecular interactions between adipose tissue and beta-cells are not yet fully elucidated. We investigated, whether or not the adipocytokine nicotinamide phosphoribosyltransferase (Nampt), which has been associated with obesity and type 2 diabetes mellitus (T2DM) directly influences beta-cell survival and function.
Methods: The effect of Nampt on viability of INS-1E cells was assessed by WST-1 assay. Apoptosis was measured by Annexin V/PI and TUNEL assay. Activation of apoptosis signaling pathways was evaluated. Adenylate kinase release was determined to assess cytotoxicity. Chronic and acute effects of the adipocytokine Nampt and its enzymatic product nicotinamide mononucleotide (NMN) on insulin secretion were assessed by glucose stimulated insulin secretion in human islets.
Results: While stimulation of beta-cells with the cytokines IL-1β, TNFα and IFN-γ or palmitate significantly decreased viability, Nampt showed no direct effect on viability in INS-1E cells or in human islets, neither alone nor in the presence of pro-diabetic conditions (elevated glucose concentrations and palmitate or cytokines). At chronic conditions over 3 days of culture, Nampt and its product NMN had no effects on insulin secretion. In contrast, both Nampt and NMN potentiated glucose stimulated insulin secretion acutely during 1h incubation of human islets.
Conclusion/interpretation: Nampt did influence neither beta-cell viability nor apoptosis but acutely potentiated glucose stimulated insulin secretion.
|
4 |
Engineered human pluripotent stem cell lines for following differentiation into pancreatic islets and addressing their maturationZanfrini, Elisa 17 January 2024 (has links)
No description available.
|
5 |
Oleate rescues INS-1E β-cells from palmitate-induced apoptosis by preventing activation of the unfolded protein response / -Oleat schützt INS-1E β-Zellen vor Palmitat-induzierter Apoptose durch eine Blockierung der unfolded protein response-Sommerweiß, Dietlind 29 July 2015 (has links) (PDF)
In this project I sought to analyse the effects of different free fatty acids (FFAs) on INS-1E β-cells. The saturated fatty acid palmitate is considered toxic whereas the monounsaturated fatty acid oleate is harmless. In my working hypothesis I assumed an additional protective effect of oleate when used in combination with palmitate. Furthermore I aimed to explore in detail the possible causes and signalling pathways responsible for apoptosis or sustained cell survival. I examined the Endoplasmic Reticulum (ER) stress response, called unfolded protein response (UPR), as one essential criterion deciding about cell death or life. Analysis of viability and apoptosis confirmed the deleterious effect of palmitate on INS-1E β-cells after 24h of incubation. Oleate proved not to be harmful and even reversed the toxicity of palmitate. When the main components of the UPR were assessed using Western blot analyses and quantitative PCR was performed I found positive proof that palmitate activated the UPR and ultimately led to apoptosis. By contrast, oleate completely prevented UPR signalling. I conclude that oleate rescues INS-1E β-cells by inhibiting ER stress and its signalling.
|
6 |
Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetesSolimena, Michele, Schulte, Anke M., Marselli, Lorella, Ehehalt, Florian, Richter, Daniela, Kleeberg, Manuela, Mziaut, Hassan, Knoch, Klaus-Peter, Parnis, Julia, Bugliani, Marco, Siddiq, Afshan, Jörns, Anne, Burdet, Frédéric, Liechti, Robin, Suleiman, Mara, Margerie, Daniel, Syed, Farooq, Distler, Marius, Grützmann, Robert, Petretto, Enrico, Moreno-Moral, Aida, Wegbrod, Carolin, Sönmez, Anke, Pfriem, Katja, Friedrich, Anne, Meinel, Jörn, Wollheim, Claes B., Barretton, Gustavo B., Scharfmann, Raphael, Nogoceke, Everson, Bonifacio, Ezio, Sturm, Dorothée, Meyer-Puttlitz, Birgit, Boggi, Ugo, Saeger, Hans-Detlev, Filipponi, Franco, Lesche, Mathias, Meda, Paolo, Dahl, Andreas, Wigger, Leonore, Xenarios, Ioannis, Falchi, Mario, Thorsens, Bernard, Weitz, Jürgen, Bokvist, Krister, Lenzen, Sigurd, Rutter, Guy, Froguel, Philippe, von Bülow, Manon, Ibberson, Mark, Marchetti, Piero 27 February 2019 (has links)
Pancreatic islet beta cell failure causes type 2 diabetes in humans. To identify transcriptomic changes in type 2 diabetic islets, the Innovative Medicines Initiative for Diabetes: Improving beta-cell function and identification of diagnostic biomarkers for treatment monitoring in Diabetes (IMIDIA) consortium (www.imidia.org) established a comprehensive, unique multicentre biobank of human islets and pancreas tissues from organ donors and metabolically phenotyped pancreatectomised patients (PPP).
|
7 |
Oleate rescues INS-1E β-cells from palmitate-induced apoptosis by preventing activation of the unfolded protein responseSommerweiß, Dietlind 25 March 2015 (has links)
In this project I sought to analyse the effects of different free fatty acids (FFAs) on INS-1E β-cells. The saturated fatty acid palmitate is considered toxic whereas the monounsaturated fatty acid oleate is harmless. In my working hypothesis I assumed an additional protective effect of oleate when used in combination with palmitate. Furthermore I aimed to explore in detail the possible causes and signalling pathways responsible for apoptosis or sustained cell survival. I examined the Endoplasmic Reticulum (ER) stress response, called unfolded protein response (UPR), as one essential criterion deciding about cell death or life. Analysis of viability and apoptosis confirmed the deleterious effect of palmitate on INS-1E β-cells after 24h of incubation. Oleate proved not to be harmful and even reversed the toxicity of palmitate. When the main components of the UPR were assessed using Western blot analyses and quantitative PCR was performed I found positive proof that palmitate activated the UPR and ultimately led to apoptosis. By contrast, oleate completely prevented UPR signalling. I conclude that oleate rescues INS-1E β-cells by inhibiting ER stress and its signalling.
|
8 |
Zelluläre Wirkung, Wirkmechanismen und Nachweisverfahren von Schilddrüsenhormonen und ihren MetabolitenLehmphul, Ina 17 November 2015 (has links)
Schilddrüsenhormone (TH) regulieren Metabolismus und Energiestoffwechsel. Der TH‐Metabolit (THM) 3,5‐T2 (3,5‐Diiod‐L‐Thyronin) aktiviert Fett‐Oxidation und mitochondriale Atmung. Der THM 3‐Iodothyronamin (3‐T1AM) beeinflusst zusätzlich glukoregulatorische Prozesse. THM können zur Reduktion von Körperfett beitragen. Um 3,5‐T2 im humanen Serum nachzuweisen sollte ein Immunoassay aufgebaut, validiert und angewendet werden. In intakten hepatozellulären (HepG2) sowie pankreatischen ß‐Zellen (MIN6) sollte untersucht werden ob THM durch Modulation der mitochondrialen Aktivität die zelluläre Substratverstoffwechslung (3,5‐T2) und Insulinsekretion (3‐T1AM) regulieren können. Der Immunoassay ist sensitiv, spezifisch und misst zuverlässig 3,5‐T2 im humanen Serum. Hyper‐ und Hypothyreose zeigen vergleichbare 3,5‐T2 Konzentrationen, jedoch akkumuliert 3,5‐T2 bei sekundären Erkrankungen der Schilddrüse und athyreoten Patienten unter Thyroxin‐Supplementation. In HepG2‐Zellen konnte die Aktivierung der mitochondrialen Atmung durch 3,3‘,5‐Triiod‐L‐Thyronin (T3), jedoch nicht durch 3,5‐T2 stimuliert werden. Die Expression von TH‐transporters (THT) war gering verglichen mit Maus‐Hepatozyten. MIN6 exprimiert THT vergleichbar mit Langerhansschen Inselzellen der Maus. 3‐T1AM wird in die Zelle aufgenommen, zu 3‐Iodothyroessigsäure (TA1) metabolisiert, und wieder exportiert. Nach 3‐T1AM Gabe ist die mitochondriale ATP‐Produktion sowie die Glukose‐stimulierte Insulinsekretion (GSIS) vermindert. 3,5‐T2 zirkuliert in euthyreoten Individuen, ist nicht an der zentralen Regulation der TH‐Achse beteiligt, wird extrathyroidal gebildet und niedrige T3‐Werte können durch erhöhtes 3,5‐T2 erklärt werden. HepG2 erwies sich als ungeeignetes Zellmodell, da wenige THT vorhanden sind, 3,5‐T2 die Plasmamembran wahrscheinlich nicht passieren kann und damit die Aktivierung der Mitochondrien aus bleibt. In MIN6 wurde gezeigt, dass die GSIS nicht ausschließlich an der Plasmamembran durch 3‐T1AM reguliert wird. / Thyroid hormones (TH) regulate metabolism and energy metabolism. The TH‐metabolite (THM) 3,5‐T2 (3,5‐diiodo‐L‐thyronine) activates fat oxidation and mitochondrial respiration. The THM 3‐T1AM (3‐iodothyronamine) influences in addition glucoregulatory processes. THM may support reduction in body fat mass. It was the idea to establish, validate and apply an immunoassay to determine 3,5‐T2 in human serum. Using intact hepatocellular (HepG2) as well as pancreatic ß‐cells (MIN6) it should be tested if THM can modulate mitochondrial activity, resulting in increased cellular substrate usage (3,5‐T2) as well as decreased insulin secreation (3‐T1AM). The established immunoassay is sensitive, specific and detects precisely 3,5‐T2 in human serum. Hyper‐ and hypothyroidism shows similar 3,5‐T2 concentrations, although 3,5‐T2 accumulates in secondary thyroidal illness as well as in athyreotic patients under thyroxine‐supplementation. Using HepG2 cells, mitochondrial respiration was stimulated by 3,3‘,5‐triiodo‐L‐thyronine (T3), but 3,5‐T2 had no effect. Expression of TH‐transporters (THT) was low compared to murine hepatocytes. In contrast, MIN6 express THT comparable to murine Langerhans islets. 3‐T1AM is taken up by the cell, metabolized to 3‐iodothyroacetic acid (TA1) and following export. After 3‐T1AM application mitochondrial ATP‐production as well as glucose‐stimulated insulin secretion (GSIS) was reduced. 3,5‐T2 circulates in euthyroid individuals, is not involved in central regulation of TH‐axis, is produced extrathyroidally and low T3 values can be explained by increased 3,5‐T2. HepG2 was shown to be an inappropriate cellmodel, because THT are merely expressed, suggesting that 3,5‐T2 is not able to pass the plasma membrane, thereby preventing mitochondrial activation. In addition, it was shown in MIN6 cells, that GSIS is not exclusively regulated at the plasma membrane level via 3‐T1AM.
|
9 |
Stimulus-secretion coupling in pancreatic β-cells of healthy and diabetic rats in tissue slice preparation / Stimulus Sekretions Kopplung pankreatischer β-Zellen gesunder und diabetischer Ratten in Gewebeschnitt PräparationRose, Tobias 18 January 2006 (has links)
No description available.
|
Page generated in 0.0496 seconds