Spelling suggestions: "subject:"monocular""
151 |
Academic Performance of Oyler School Students after Receiving Spectacle CorrectionRenner, Kimberly 27 June 2017 (has links)
No description available.
|
152 |
Characterization and Correction of Spatial Misalignment in Head-Mounted DisplaysBauer, Mitchell D. 20 December 2017 (has links)
No description available.
|
153 |
Optimal integration of shading and binocular disparity for depth perceptionLovell, P.G., Bloj, Marina, Harris, J.M. January 2012 (has links)
No / We explore the relative utility of shape from shading and binocular disparity for depth perception. Ray-traced images either featured a smooth surface illuminated from above (shading-only) or were defined by small dots (disparity-only). Observers judged which of a pair of smoothly curved convex objects had most depth. The shading cue was around half as reliable as the rich disparity information for depth discrimination. Shading- and disparity-defined cues where combined by placing dots in the stimulus image, superimposed upon the shaded surface, resulting in veridical shading and binocular disparity. Independently varying the depth delivered by each channel allowed creation of conflicting disparity-defined and shading-defined depth. We manipulated the reliability of the disparity information by adding disparity noise. As noise levels in the disparity channel were increased, perceived depths and variances shifted toward those of the now more reliable shading cue. Several different models of cue combination were applied to the data. Perceived depths and variances were well predicted by a classic maximum likelihood estimator (MLE) model of cue integration, for all but one observer. We discuss the extent to which MLE is the most parsimonious model to account for observer performance.
|
154 |
Use of single-vision distance spectacles improves landing control during step descent in well-adapted multifocal lens-wearersTimmis, Matthew A., Johnson, Louise, Elliott, David, Buckley, John 28 April 2014 (has links)
No / Epidemiologic research has shown that multifocal spectacle wearers (bifocal and progressive addition lenses [PALs]) are more than twice as likely to fall than are nonmultifocal spectacle wearers, with this risk further increasing when negotiating stairs. The present study investigated whether step and stair descent safety is improved by using single-vision distance lenses. METHODS: From a stationary standing position on top of a block, 20 long-term multifocal wearers stepped down (from different block heights) onto a lower level wearing bifocal, progressive addition, or single-vision distance lenses. RESULTS: Use of single-vision distance spectacles led to an increased single-limb support time, a reduced ankle and knee angle and vertical center-of-mass velocity at contact with the lower level, and a reduced ankle angular velocity and vertical center-of-mass velocity during initial landing (P < 0.03). These findings indicate that landing occurred in a more controlled manner when the subjects wore single-vision distance spectacles, rather than tending to "drop" onto the lower level as occurred when wearing bifocals or PALs. CONCLUSIONS: Use of single-vision distance spectacles led to improvements in landing control, consistent with individuals' being more certain regarding the precise height of the lower floor level. This enhanced control was attributed to having a view of the foot, step edge, and immediate floor area that was not blurred, magnified, or doubled and that did not suffer from image jump or peripheral distortions. These findings provide further evidence that use of single-vision distance lenses in everyday locomotion may be advantageous for elderly multifocal wearers who have a high risk of falling.
|
155 |
Test-retest variability of Randot stereoacuity measures gathered in an unselected sample of UK primary school childrenAdler, P., Scally, Andy J., Barrett, Brendan T. January 2012 (has links)
No / To determine the test-retest reliability of the Randot stereoacuity test when used as part of vision screening in schools. METHODS: Randot stereoacuity (graded-circles) and logMAR visual acuity measures were gathered in an unselected sample of 139 children (aged 4-12, mean 8.1+/-2.1 years) in two schools. Randot testing was repeated on two occasions (average interval between successive tests 8 days, range: 1-21 days). Three Randot scores were obtained in 97.8% of children. RESULTS: Randot stereoacuity improved by an average of one plate (ie, one test level) on repeat testing but was little changed when tested on the third occasion. Within-subject variability was up to three test levels on repeat testing. When stereoacuity was categorised as 'fine', 'intermediate' or 'coarse', the greatest variability was found among younger children who exhibited 'intermediate' or 'coarse'/nil stereopsis on initial testing. Whereas 90.8% of children with 'fine' stereopsis (</=50 arc-seconds) on the first test exhibited 'fine' stereopsis on both subsequent tests, only approximately 16% of children with 'intermediate' (>50 but </=140 arc-seconds) or 'coarse'/nil (>/=200 arc-seconds) stereoacuity on initial testing exhibited stable test results on repeat testing. CONCLUSIONS: Children exhibiting abnormal stereoacuity on initial testing are very likely to exhibit a normal result when retested. The value of a single, abnormal Randot graded-circles stereoacuity measure from school screening is therefore questionable.
|
156 |
Pokročilé metody snímání a hodnocení kvality 3D videa / Advanced Methods for 3D Video Capturing and EvaluationKaller, Ondřej January 2018 (has links)
Disertační práce se zabývá metodami snímání a hodnocení kvality 3D obrazů a videí. Po krátkém shrnutí fyziologie prostorového vnímání, obsahuje práce stav poznání v oblastech problému adaptivní paralaxy a konfigurace kamer pro snímání klasického stereopáru. Taktéž shrnuje dnešní možnosti odhadu hloubkové mapy. Zmíněny jsou aktivní i pasivní metody, detailněji je vysvětleno profilometrické skenování. Byly změřeny některé technické parametry dvou technologií současných 3D zobrazovačů, a to polarizačně-oddělujících a využívajících časový multiplex, například přeslechy mezi levým a pravým snímkem. Jádro práce tvoří nová metoda pro vytváření hloubkové mapy při snímání 3D scény, kterážto byla autorem navržena a testována. Inovativnost tohoto přístupu spočívá v chytré kombinaci současných aktivních a pasivních metod snímání hloubky scény, která vtipně využívá výhod obou metod. Nakonec jsou prezentovány výsledky subjektivních testů kvality 3D videa. Největší přínos zde má navržená metrika modelující výsledky subjektivních testů kvality 3D videa.
|
157 |
Vestibular-Related Traumatic Brain Injury: A Preliminary Voxel-Based Morphometry AnalysisCacace, Anthony T., Haake, E. Mark, Akin, Faith W., Murnane, Owen D. 07 March 2013 (has links)
Vestibular-related problems (dizziness, vertigo, and imbalance) are common sequelae following concussion and blast exposures that result in mild traumatic brain injury (mTBI). However, the anatomical substrate connected to these dysfunctions is not well understood. To provide a better understanding of this area, we used voxel-based morphometry (VBM) as a platform for studying vestibular-related mTBI in the human brain. Briefly, VBM is a group comparison study which evaluates structural differences in magnetic resonance (MR) images between agematched groups of individuals (11 vestibular TBI patients and 10 controls). Using the VBM-8 Toolbox and statistical probability mapping (SPM), MRI images were segmented into gray matter, white matter, and cerebrospinal fluid, normalized into a standardized anatomical space, and then analyzed statistically for significant anatomical differences between groups. Based on the VBM analysis, most notable differences in brain anatomy were characterized by reductions in gray matter volume observed in the middle frontal gyrus, mesial frontal lobe, and in the insular area in the left mesial temporal lobe. These findings provide a preliminary analysis of distributed gray matter changes in key frontal and temporal areas of the brain associated with mTBI related vestibular dysfunction.
|
158 |
Dense Stereo Reconstruction in a Field Programmable Gate ArraySabihuddin, Siraj 30 July 2008 (has links)
Estimation of depth within an imaged scene can be formulated as a stereo correspondence problem. Software solutions tend to be too slow for high frame rate (i.e. > 30 fps) performance. Hardware solutions can result in marked improvements. This thesis explores one such hardware implementation that generates dense binocular disparity estimates at frame rates of over 200 fps using a dynamic programming formulation (DPML) developed by Cox et. al. A highly parameterizable field programmable gate array implementation of this architecture demonstrates equivalent accuracy while executing at significantly higher frame rates to those of current approaches. Existing hardware implementations for dense disparity estimation often use sum of squared difference, sum of absolute difference or other similar algorithms that typically perform poorly in comparison to DPML. The presented system runs at 248 fps for a resolution of 320 x 240 pixels and disparity range of 128 pixels, a performance of 2.477 billion DPS.
|
159 |
Dense Stereo Reconstruction in a Field Programmable Gate ArraySabihuddin, Siraj 30 July 2008 (has links)
Estimation of depth within an imaged scene can be formulated as a stereo correspondence problem. Software solutions tend to be too slow for high frame rate (i.e. > 30 fps) performance. Hardware solutions can result in marked improvements. This thesis explores one such hardware implementation that generates dense binocular disparity estimates at frame rates of over 200 fps using a dynamic programming formulation (DPML) developed by Cox et. al. A highly parameterizable field programmable gate array implementation of this architecture demonstrates equivalent accuracy while executing at significantly higher frame rates to those of current approaches. Existing hardware implementations for dense disparity estimation often use sum of squared difference, sum of absolute difference or other similar algorithms that typically perform poorly in comparison to DPML. The presented system runs at 248 fps for a resolution of 320 x 240 pixels and disparity range of 128 pixels, a performance of 2.477 billion DPS.
|
160 |
The Omnidirectional Acquisition of Stereoscopic Images of Dynamic ScenesGurrieri, Luis E. 16 April 2014 (has links)
This thesis analyzes the problem of acquiring stereoscopic images in all gazing directions
around a reference viewpoint in space with the purpose of creating stereoscopic panoramas
of non-static scenes. The generation of immersive stereoscopic imagery suitable to stimulate
human stereopsis requires images from two distinct viewpoints with horizontal parallax in
all gazing directions, or to be able to simulate this situation in the generated imagery. The
available techniques to produce omnistereoscopic imagery for human viewing are not suitable
to capture dynamic scenes stereoscopically. This is a not trivial problem when considering
acquiring the entire scene at once while avoiding self-occlusion between multiple cameras.
In this thesis, the term omnidirectional refers to all possible gazing directions in azimuth
and a limited set of directions in elevation. The acquisition of dynamic scenes restricts the
problem to those techniques suitable for collecting in one simultaneous exposure all the necessary visual information to recreate stereoscopic imagery in arbitrary gazing directions.
The analysis of the problem starts by defining an omnistereoscopic viewing model for
the physical magnitude to be measured by a panoramic image sensor intended to produce
stereoscopic imagery for human viewing. Based on this model, a novel acquisition model is
proposed, which is suitable to describe the omnistereoscopic techniques based on horizontal stereo. From this acquisition model, an acquisition method based on multiple cameras
combined with the rendering by mosaicking of partially overlapped stereoscopic images is
identified as a good candidate to produce omnistereoscopic imagery of dynamic scenes.
Experimental acquisition and rendering tests were performed for different multiple-camera
configurations. Furthermore, a mosaicking criterion between partially overlapped stereoscopic
images based on the continuity of the perceived depth and the prediction of the location and
magnitude of unwanted vertical disparities in the final stereoscopic panorama are two main
contributions of this thesis. In addition, two novel omnistereoscopic acquisition and rendering
techniques were introduced.
The main contributions to this field are to propose a general model for the acquisition of
omnistereoscopic imagery, to devise novel methods to produce omnistereoscopic imagery, and
more importantly, to contribute to the awareness of the problem of acquiring dynamic scenes
within the scope of omnistereoscopic research.
|
Page generated in 0.0429 seconds