• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement de nouvelles biocéramiques par consolidation à basse température d'apatites nanocristallines biomimétiques

Rollin-Martinet, Sabrina 10 November 2011 (has links) (PDF)
Des apatites nanocristallines biomimétiques (ANB), de formule Ca10-x-Z(PO4)6-x(HPO4)x(OH)2-x-2Z, (H2O)n, ont été synthétisées par précipitation en milieu aqueux puis consolidées par frittage flash (Spark Plasma Sintering, SPS). Elles sont composées de nanocristaux munis d'un coeur apatitique entouré d'une couche phosphocalcique hydratée de surface contenant des ions phosphate, hydrogénophosphate et calcium "non-apatitiques" mobiles et facilement échangeables, qui leur confère une forte réactivité. La composition chimique, la structure et la morphologie des nanocristaux synthétisés évoluent avec le vieillissement en solution et ils tendent vers une plus grande stabilité thermodynamique. Bien que la teneur en espèces chimiques non-apatitiques diminue dans la couche hydratée, leur présence reste importante même après une longue maturation. Le procédé de frittage par SPS à basse température (150°C) de ces ANB a permis d'élaborer des céramiques poreuses fortement cohésives. Le phénomène de frittage ainsi observé suggère une consolidation de type "fusion cristalline" qui met à contribution la forte réactivité de surface des nanocristaux via leur couche hydratée de surface. Le module d'élasticité (12 à 35 GPa) et la résistance à la rupture en flexion (environ 10 MPa) de ces céramiques sont voisins de ceux du minéral osseux. De plus, la taille nanométrique des cristaux, bénéfique à la biorésorption après implantation en site osseux, et la présence d'espèces ioniques nonapatitiques mobiles favorable à la bioactivité sont préservées après SPS. Ces propriétés offrent aux céramiques d'ANB un potentiel particulièrement intéressant pour des applications en ingénierie tissulaire osseuse.
2

Contribuții la sinteza de hidroxiapatită dopată cu magneziu și cercetări asupra proprietăților mecanice în vederea utilizării ei în implanturi osoase / Contribution à l'optimisation de la synthèse d'hydroxyapatite substituée en magnésium et de ses propriétés mécaniques pour l'application aux implants osseux. / Contribution to the optimization of the synthesis of magnesium doped hydroxyapatite for application to bone implants.

Ioanovici, Teodora 23 March 2012 (has links)
Pour le comblement d'une perte de tissu, la greffe reste une méthode usitée en chirurgie osseuse mais une lacune importante conduit à l'emploi de matériaux artificiels. Alternative aux implants métalliques, les substituts osseux biocéramiques ont une efficacité insuffisante dans de nombreuses indications : problème d'intégration d'un volume important, résistance inadéquate à long terme, faible bioréactivité. Doper ces biocéramiques est une voie intéressante mais nombre de dopants ont abouti à des effets cytotoxiques voire à la dégradation des propriétés mécaniques. Le magnésium a été étudié comme dopant de l'hydroxyapatite pour des faibles teneurs, apportant des améliorations sans affecter la biocompatibilité. Cependant, les fortes teneurs et l'optimisation de la synthèse d'une biocéramique dopée ont été peu étudiées. Nous avons étudié et optimisé la synthèse d’hydroxyapatite par la méthode de précipitation aqueuse pour un dopage au magnésium de 1, 2, 5 et 10 % en masse. Caractérisations physicochimiques (DRX, MEB, densité), biologiques (cytotoxicité) et mécaniques (microdureté, élasticité) ont été menées (poudres ou pastilles frittées ou non). Nous avons montré l'apparition de TCP à partir de 2 % Mg, la densité des échantillons diminuant quand la teneur croît. Le dopage accroît la microdureté et le module d’Young. Aucune cytotoxicité n'a été révélée mais une importante baisse d’activité cellulaire a été remarquée pour 10 % de magnésium. Une légère augmentation a été observée pour 1 %. L'aptitude à la mise en forme a été appréciée via le coulage d'une réplique d'un implant intervertébral. Le dopage d'HA à 1 % Mg s'avère être à tout point de vue le compromis optimal. / For the filling of a loss of tissue, the graft is a current process in bone surgery, but a significant deficiency leads to the use of artificial materials. Alternative to metallic implants, bone substitutes bioceramics have insufficient efficacy in many indications: problem of integrating a large volume, inadequate long-term resistance, low bioreactivity. Doping these bioceramics is an interesting way but many of dopants have conducted to cytotoxic effects or to the degradation of mechanical properties. Magnesium has been studied as a dopant of hydroxyapatite for low contents, improving thebioceramic without affecting its biocompatibility. However, high contents and the optimization of the synthesis of such a doped bioceramic have been little studied. We investigated and optimized the synthesis of hydroxyapatite by the aqueousprecipitation process for magnesium doping of 1, 2, 5 and 10 wt%. Physico-chemical (XRD, SEM, density), biological (cytotoxicity) and mechanical (microhardness, elasticity) characterizations were conducted (on powders or pellets sintered or not). We have shown the occurrence of TCP from 2% Mg, the density of samples decreasing when the content grows. The doping increases the microhardness and the Young’s modulus. No cytotoxicity was revealed but a significant decrease in cellular activity was noted for 10% magnesium. A slight increase was observed for 1%. The ability to form an implant was assessed via the slip casting of a replica of an intervertebral implant. Doping HA to 1% Mg was found to be at any point of view the optimum composition.
3

Composites made of bioceramic and chitosan physical hydrogel as potential bone substitutes / Composites à base de biocéramique et d’hydrogel physique de chitosane pour la substitution osseuse

Ramírez Caballero, Silvia 07 February 2018 (has links)
Les substituts osseux synthétiques servent au remplacement temporaire des tissus osseux, favorisent la formation, la croissance et la survie de l’os et sont biorésorbables. Aucun matériau monophasé ne remplissant complètement ces exigences, un matériau composite bioinspiré est une alternative possible. L’objectif de cette thèse était par conséquent d’étudier la synthèse et les propriétés de deux composites biocéramiques/biopolymères : des hydrogels physiques de chitosane minéralisés avec de l’apatite, et une hardystonite architecturée imprégnée par des hydrogels physiques de chitosane. Afin d’obtenir le premier matériau, deux approches ont été développées. La première a consisté à fabriquer des hydrogels physiques de chitosane puis à les minéraliser avec de l’apatite ; la formation de microcapillaires se produit avec des conditions de synthèse spécifiques, et les précipités d’apatite ont été trouvés uniquement à la surface des hydrogels. La seconde approche consiste à convertir des suspensions homogènes contenant le phosphate de calcium et le chitosane en hydrogels de chitosane minéralisés par l’apatite. Les suspensions ont été préparées soit avec un mélange simultané, soit avec des mélanges successifs de suspensions phosphates de calcium avec les solutions de chitosane. Des agrégats minéraux plus petits avec une distribution plus uniforme ont été formés avec la méthode des mélanges successifs. Cela est attribué à une meilleure homogénéité, une viscosité plus faible et l’absence de chitosane. De manière générale, trois paramètres influencent les propriétés mécaniques d’hydrogels de chitosane minéralisés : la base utilisée pour la gélification (déterminant la vitesse de gélification : une grande vitesse conserve l’enchevêtrement des chaînes, résultant en une meilleure élasticité) ; la densité de la réticulation physique (cela induit un module de conservation plus important) et la force ionique (qui mène au désenchevêtrement des chaînes de chitosane, donc, à un faible module de conservation). Cette compréhension a permis l’utilisation de ces suspensions de phosphate de calcium-chitosane en tant qu’encre pour l’impression 3D. Les hydrogels de chitosane et les hydrogels minéralisés ne sont pas cytotoxiques. Pour fabriquer le second matériau, une encre pré-céramique a été imprimée en 3D puis frittée pour former une céramique d’hardystonite cristalline. Les scaffolds d’hardystonite ont été imprégnés par la solution de chitosane, converties ensuite en hydrogels physiques de chitosane. A plus forte concentration de chitosane, la viscosité de la solution était plus grande et l’imprégnation de la matrice plus lente. Avec une vitesse de gélification plus importante, qui dépend de la base utilisée pour la gélification, la perte de poids est plus faible pendant la gélification. L’hydrogel de chitosane a partiellement rempli les pores participant au support de charges externes et à la dissipation d’énergie par rupture. / Bone substitutes, an approach to attend social demand for bone healing and reparation, are temporary replacements of bone tissue, promote bone formation and growth and finally are bioresorbed. No single material meets these requirements; an alternative is a bioinspired composite material. The objective of this thesis was thus to study the synthesis and properties of two bioceramics/biopolymer composites: chitosan physical hydrogels mineralized with apatite and hardystonite scaffolds impregnated with chitosan physical hydrogels. To obtain the first material, two strategies were developed. The first one consisted in the fabrication of chitosan physical hydrogels and its subsequent mineralization with apatite; the formation of micro-capillaries occurred under particular synthesis conditions, and apatite precipitates were found only on the surface of hydrogels. The second strategy consisted in a simultaneous conversion of chitosan-calcium phosphate suspensions into chitosan-apatite hydrogels. The suspensions were prepared by sequential or simultaneous mixing of calcium and phosphate suspensions with chitosan solutions. Smaller and more uniformly distributed mineral aggregates were formed following sequential mixing, attributed to higher homogeneity, lower viscosity and no-presence of chitosan. This enabled the use of these chitosan-calcium phosphate suspensions as inks for 3-D printing. In general, three factors impacted the mechanical properties of mineralized chitosan hydrogels: the base used for gelation (determining the gelation rate: a higher rate preserved chain entanglement, resulting in higher elasticity); the density of physical crosslinks (hence a higher storage modulus) and the ionic strength (that led to chitosan chain disentanglements, thus, low storage modulus). Chitosan hydrogels and mineralized hydrogels were not cytotoxic, having no deleterious effects on osteoblasts proliferation. To fabricate the second material, pre-ceramic ink was 3-D printed and then sintered to form crystalline hardystonite ceramic. Hardystonite scaffolds were impregnated with chitosan solution that was, next, converted to chitosan physical hydrogel. At higher chitosan concentration, viscosity of solution was higher and scaffold impregnation was lower. At higher gelation rate, which depend on base used for gelation, lower weight loss during gelation. Chitosan hydrogel partially filled the pores contributing to bearing of external loads and to energy dissipated by fracture.
4

Céramiques phosphocalciques fonctionnalisées : étude des propriétés de surface par méthodes spectroscopiques / Functionalised phosphocalcic ceramics : study of surface properties by spectroscopic methods

El Felss, Nadia 14 December 2018 (has links)
Ce travail s’inscrit dans le cadre général du développement de biomatériaux ostéoinducteurs pour la réparation de grands défauts osseux. L’étude est une contribution à la compréhension des interactions physiques et chimiques entre des céramiques phosphocalciques et deux protéines d’intérêt : la fibronectine, protéine d’adhésion cellulaire, et le VEGF (pour Vascular Endothelial Growth factor) qui est impliqué dans la vascularisation et l’amélioration de la formation osseuse.Les interactions physiques fibronectine/biocéramique ont été étudiées par spectroscopie de force afin d’évaluer l’influence de la topographie et de la composition chimique de céramiques phosphocalciques en hydroxyapatite (HA), hydroxyapatite silicatée (SiHA) et hydroxyapatite carbonatée (CHA) sur l’adhésion de la fibronectine. Les résultats obtenus par cartographie de forces mettent en évidence une absence d’incidence de la chimie des céramiques polies sur la répartition en surface et l’intensité des forces d’adhésion. En revanche ces dernières sont plus fortes au niveau des joints de grains des céramiques non polies mettant en avant une influence de la topographie de surface des matériaux modulée par la chimie.Le protocole de fonctionnalisation par le VEGF consiste en trois étapes : silanisation, addition du SM(PEG)6 et immobilisation du VEGF. Les interactions chimiques VEGF/biocéramique ont été étudiées principalement par imagerie Raman pour suivre ces étapes successives de la fonctionnalisation par le VEGF de céramiques polies en hydroxyapatite (HA) et hydroxyapatite carbonatée (CHA). Cette approche a permis de cartographier l’évolution chimique de la surface des matériaux et de mettre en évidence la distribution spatiale ainsi que les réactions préférentielles entre les molécules intermédiaires et le VEGF en fonction de la nature du substrat. / This work is ascribed within the framework of the development of osteoinductive biomaterials for the repair large bone defects. It is a contribution to the understanding of the physical and chemical interactions between phosphocalcic ceramics and two proteins of interest: fibronectin (Fn), a cell adhesion protein, and Vascular Endothelial Growth Factor (VEGF) which is involved in vascularisation and improvement of bone formation.Fibronectin/bioceramic physical interactions were studied by force spectroscopy to evaluate the influence of the topography and the chemical composition of phosphocalcic ceramics made of hydroxyapatite (HA), silicated hydroxyapatite (SiHA) and carbonated hydroxyapatite (CHA) on fibronectin adhesion. The results obtained in terms of force cartography do not indicate any impact of the polished ceramics chemistry on the surface distribution and intensity of adhesion forces. However, these forces are more intense at the level of the grain boundaries of unpolished ceramics, highlighting an influence of the topography modulated by the chemical composition.The protocol for functionalisation by VEGF consists of three steps: silanisation, addition of SM(PEG)6 and immobilisation of VEGF. VEGF/bioceramic chemical interactions were studied mainly by Raman imaging in order to follow the successive steps of the functionalisation by VEGF of the polished surface of ceramics made of hydroxyapatite (HA) and carbonated hydroxyapatite (CHA). This approach allowed to map the surface chemical changes and to point out the spatial distribution as well as the preferential reactions between the intermediate molecules and VEGF depending of the substrate.

Page generated in 0.0861 seconds