• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 12
  • 11
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cloning and Biochemical characterization of a methyltransferase from Arabidopsis involved in choline and phospholipid metabolism

BeGora, Michael D. January 2010 (has links)
<p> In plants, phosphocholine (PCho) is a precursor to the membrane component phosphatidylcholine (PtdCho) and free choline (Cho). A mutant Saccharomyces cerevisiae yeast strain unable to produce PtdCho without exogenous choline was used for transformation with an Arabidopsis cDNA library cloned in the yeast expression vector pFK61. A plant cDNA associated with locus At1g48600 functionally complemented the mutant by restoring growth on minimal synthetic medium lacking choline but containing the phosphobase phosphomethylethanolamine (PMEA). Crude extracts prepared from the yeast showed a novel capacity to convert PMEA to phosphodimethylethanolamine (PDEA) and PCho and hence this enzyme has been named Arabidopsis S-adenosyl-L-methionine (AdoMet): phosphomethylethanolamine N-methyltransferase (AtPMEAMT). </p> <p> AtPMEAMT is a bipartite enzyme containing tandem N-and C-terminal AdoMet-binding domains. The predicted amino acid sequence shows an 87% identity to the previously characterized AdoMet: phosphoethanolamine N-methyltransferase (AtPEAMT) from Arabidopsis. An important distinction between AtPMEAMT and AtPEAMT is that the former enzyme is unable to methylate phosphoethanolamine (PEA). However, both AtPEAMT and AtPMEAMT can methylate PMEA and PDEA, two phosphobase intermediates ofPCho synthesis. The apparent Km values were determined for AtPEAMT and AtPMEAMT toward PMEA and PDEA and found to be 0.32 and 0.14 mM, respectively, for PEAMT and 0.16 and 0.03 mM, respectively, for PMEAMT. The N-and C-terminal Ado Met-domains of PEAMT and PMEAMT were cloned separately into a pET30a(+) vector for protein expression and extracts containing recombinant proteins were assayed for phosphobase methyltransferase activity. Only the gene product encoding the domain associated with the C-terminal half of PMEAMT methylated both PMEA and PDEA, an activity found with the native protein. A chimera was produced by combining the N-terminal half ofPEAMT and the C-terminal half of PMEAMT. The chimeric protein is able to methylate PEA, PMEA and PDEA indicating that a feature associated with the N-terminal half of PEAMT is required for PEA methylation. This result suggests that differences associated with the N-terminal domain are likely responsible for the inability ofPMEAMT to use PEA as a substrate. </p> <p> An Arabidopsis mutant line with a T-DNA insertion in the promoter region of PMEAMT (SALK 006037) was obtained and RT-PCR analysis of plants homozygous for the insert showed that the mutant lacks transcripts associated with this gene. Relative to wild-type plants grown under identical conditions the mutant plants showed no visible difference in morphological or developmental phenotype. However, shotgun lipidomics using electrospray ionization tandem mass spectrometry showed a 2.1-fold greater abundance ofa 34:3 phosphatidylmethylethanolamine (PtdMEA) molecular species in mutant plants compared to wild-type. One biological role of PMEAMT may be to reduce the likelihood for PtdMEA incorporation into phospholipids ofmembranes. PtdMEA incorporation in membranes is associated with reduced viability of yeast but its effect on the physiology ofplants is, as yet, unknown. </p> / Thesis / Doctor of Philosophy (PhD)
12

Etude structurale du complexe CCR4-NOT / Structural studies of the complex CCR4-NOT

Basquin, Jérôme 21 December 2015 (has links)
Le recyclage des ARN débute par un étape de déadenylation ou la queue poly (A) est enzymatiquement clivée. La deadenylation est l’étape limitante dans le processus de dégradation des ARN. In vivo la deadenylation s’effectue successivement par les complexes multi-protéiques Pan2-Pan3 et Ccr4-Not. Le complexe Ccr4-not est conservé chez les eucaryotes et considéré comme le complexe prédominant responsable de l’activité de déadenylation dans la cellule. Le complexe est compose de neuf protéines organisées autour de la protéine d’échafaudage Not1. Le complexe comprend quatre modules distincts ; le module de déadenylation, la module Caf40, le module N-terminal et le module C-terminal. Mon mémoire de thèse regroupe les études structurales qui ont contribuées à caractériser les structures des différents modules à la fois chez la levure et chez l’humain / MRNA turnover begins with deadenylation where in the poly(A) tail at the 3’ end of the mRNA is removed. Deadenylation is the rate-limiting step of the decay pathway. In vivo, deadenylation is carried out by two major macromolecular complexes, the Pan2-Pan3 complex and the Ccr4-Not complex. The Ccr4-Not complex is a multi-protein complex that is evolutionarily conserved in all eukaryotes and is considered to be the major deadenylase complex in the cell. In S. cerevisiae, the Ccr4-Not complex is composed of nine subunits and is built around the scaffolding protein Not1. Structurally, the Ccr4-Not complex assembles into four separate modules with distinct domains of Not1 acting as a scaffold for individual modules. The four modules include the N-terminal module, the deadenylase module, the Caf40 module and the C-terminal module. With the exception of the C-terminal module, the architecture and biochemical role of all other modules of the yeast Ccr4-Not complex has been characterized. My doctoral thesis is focused on the elucidation of the architecture of the human of the yeast Ccr4-Not complex
13

Identification Of GAL102 Encoded UDP-Glucose 4, 6 Dehydratase Activity, As A Novel Virulence Factor In Candida Albicans

Sen, Manimala 08 1900 (has links) (PDF)
Among fungal pathogens responsible for opportunistic infections, species of the genus Candida have a major role (Mitchell, 1998). Various Candida species cause superficial infections which can be cured by the currently available antifungal arsenal (Noble and Johnson, 2007). However, species of the genus Candida are also responsible for life-threatening systemic infections, particularly in immunocompromised patients with weakened immune system. Among Candida species, C. albicans, which can also be a commensal of the skin and the gastrointestinal and genitourinary tracts, is responsible for the majority of Candida bloodstream infections. However, there is an increasing incidence of infections caused by C. glabrata because it is less susceptible to azoles. Other medically important Candida species include C. parapsilosis, C. tropicalis and C. dubliniensis. The problem has been further worsened by the emergence of many drug resistant isolates which pose a major hurdle during a given treatment regimen. Therefore, there is a dire need to identify novel drug targets and the current study focuses on one such protein found in C. albicans and related Candida species. CaGAL102 does not encode a functional galactose epimerase CaGAL102 was previously identified in the lab as a paralog of CaGAL10. CaGAL10 endoes a functional UDP-galactose 4-epimerase and it can complement a Scgal10 null strain. Further, work on the Gal10 protein in the encapsulated yeast Cryptococcus neoformans identified two Gal10 paralogs in the genome, Uge1 and Uge2 with distinct functions (Moyrand et al., 2008). A similar scenario is found in S. pombe in which two Gal10 sequence homologs have been annotated. In the light of these observations, we wanted to test if CaGAL102 also encodes a functional ScGAL10 homolog. We found that CaGAL102 could not complement Scgal10 null strain though there was a strong conservation in the cofactor and the catalytic motif in both the proteins. We found after a careful literature review that Gal10 belongs to a family of proteins called the short chain dehydratase/reductase family (SDR) (Jornvall et al., 1995), members of which are characterised by the presence of glycine rich cofactor binding motif at the N-terminus and an YXXXK catalytic motif. Proteins belonging to the SDR family have a residue level identity of 15-30% indicating early duplication and divergence. Based on our literature survey we carried out a BLAST search in the NCBI protein database using CaGal102 as the bait protein. We found that CaGal102 is 32% identical at the protein level to dTDP-glucose 4,6 dehydratase (RmlB), another member of the SDR family. RmlB is the second enzyme of the rhamnose biosynthetic pathway which gives rise to dTDP-rhamnose. This pathway is involved in cell wall biosynthesis in bacteria and it has been shown that rmlB is essential for growth of Mycobacterium smegmatis (Li et al, 2006). Interestingly rhamnose is not present in the cell wall of C. albicans. Biochemical characterisation of CaCaGal102 A plant homolog of RmlB is found in A. thaliana which uses UDP-glucose as the substrate (Oka et al., 2007). Based on our alignment data we identified many critical residues in CaGal102. Most importantly we identified that lysine at position 159 lies in the YXXXK motif and could be important for activity. We therefore, mutated the lysine at position 159 to alanine. In order to find out the biochemical function of CaGal102 in vitro, we cloned expressed and purified recombinant wild type and catalytic mutant proteins from E. coli and used the purified proteins for our assays. We found that CaGal102 uses UDP-glucose as the preferred substrate. To further substantiate our data, we reintegrated the wild type or the mutant alleles in the native locus of CaGAL102 and checked for the rescue of morphology defects like filamentation and sensitivity to cell wall damaging agents. We also found that the Cagal102∆/∆ strain is avirulent in a mouse model of systemic infection. We have also carried out infection studies with the null mutant and the wild type and the catalytic mutant reintegrant strains. Our observation suggests that reintegrating one copy of the wild type allele rescues the virulence defect. Interestingly the strain harbouring one copy of the mutant allele behaves like the null mutant in a mouse model of systemic infection. We have also identified sequence homologs of CaGal102 in related Candida species. It is plausible to think that the homologs in related species also have similar effects and hence targeting this protein by a small molecule could help in treating candidiasis caused by related species. CaGAL102 is involved in cell wall architecture in C. albicans To elucidate the role of CaGal102 in C. albicans we generated a knockout out strain and studied various mutant phenotypes. The most striking observation was that the cells of the null mutant were filamentous as compared to the wild type control when grown in normal rich media. Further the cells were sensitive to various cell wall damaging agents and also to hygromycin B. We reasoned that lack of CaGal102 causes perturbation in the cell wall architecture rendering the cells sensitive to various cell wall damaging agents. To further strengthen this hypothesis, we decided to study the genetic interaction of CaGAL102 with genes known to be involved in cell wall biosynthesis in C. albicans. One of the candidate genes we chose for our study was GAL10, deletion of which in C. albicans renders the cells sensitive to various cell wall damaging agents. Loss of function of UGE1 in C. neoformans impaired biosynthesis of a cell wall component, galactoxylomannan. We found that cells lacking both Gal102 and Gal10 adhered to nylon membranes poorly as compared to single mutants or the wild type control. The second gene we chose was a P-type ATPase, PMR1 deletion of which causes increased sensitivity to cell wall damaging agents and hyper-activation of the cell wall integrity pathway similar to Cagal102∆/∆ strain. We found that cells lacking both Pmr1 and Gal102 were more sensitive to hygromycin B as compared to the single mutants. This confirmed our idea that CaGal102 is a novel gene involved in cell wall biogenesis in C. albicans. REFERENCES: Mitchell, A.P. (1998) Dimorphism and virulence in Candida albicans. Curr Opin Microbiol, 1, 687-692. Noble, S.M. and Johnson, A.D. (2007) Genetics of Candida albicans, a diploid human fungal pathogen. Annu Rev Genet, 41, 193-211. Moyrand, F., Lafontaine, I., Fontaine, T. and Janbon, G. (2008) UGE1 and UGE2 regulate the UDP-glucose/UDP-galactose equilibrium in Cryptococcus neoformans. Eukaryot Cell, 7: 2069-2077. Jornvall Hans, Persson Bengt, Krook Maria,‟ Atrian Silvia, Gonzalez-Duarte Roser, Jeffery Jonathan, and Ghosh Debashis (1995). Short-Chain Dehydrogenases Reductases (SDR). Biochemistry, 34: 6004-13. Li, W., Xin, Y., McNeil, M.R. and Ma, Y. (2006) rmlB and rmlC genes are essential for growth of mycobacteria. Biochem Biophys Res Commun, 342: 170-178. Oka, T., Nemoto, T. and Jigami, Y. (2007) Functional analysis of Arabidopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-D-glucose to UDP-L-rhamnose conversion. J Biol Chem, 282: 5389-5403.
14

Substrátová specifita adenylačních domén synthetas v sekundárním metabolismu. / The substrate specificity of adenylation domains of synthetases in secondary methabolism.

Vobruba, Šimon January 2015 (has links)
The crucial part of the biosynthesis of lincosamide antibiotics lincomycin and celesticetin is the condensation of amino sugar and amino acid moieties. This reaction is catalysed by the oligomeric enzyme lincosamide synthetase (LS). One of the most important components of LS is adenylation domain recognizing and activating amino acid precursor. The substrate specificity of adenylation domain is determined by "nonribosomal code", 10 amino acids residues which side chains are in close contact with the activated substrate. The homologous adenylation domains LmbC from biosynthesis of lincomycin and CcbC from biosynthesis of celesticetin exhibit strong substrate specificity for their natural substrates (2S,4R)-4-propyl-L-proline (PPL) and L-proline, respectively. At first the effect of selected amino acid residues of LmbC nonribosomal code on the substrate specificity of the whole domain was tested. The amino acids residues, most important for preference of PPL substrate over L proline, were determined: G308, A207 and L246. Then the effect of double mutations in nonribosomal codes of both LmbC and CcbC on their substrate specificity was evaluated. The double mutants LmbC G308V + A207F and CcbC V306G + F205A were prepared and tested biochemically. The results brought new evidence of validity of homologous models...
15

Estudo das propriedades físico-químicas e funcionais de uma endo-1,4-B-xilanase de Aspergillus tamarii Kita e a sua aplicação na produção de xilooligossacarídeos / Study of the physical-chemical and functional properties of an endo-1,4-B-xylanase from Aspergillus tamarii Kita and its application in the production of xylooligosaccharides

Heinen, Paulo Ricardo 13 December 2017 (has links)
As endo-1,4-?-xilanases (EC 3.2.1.8) formam o maior grupo de enzimas hidrolíticas envolvido na degradação da xilana, visto que catalisam a hidrólise aleatória de ligações glicosídicas do tipo ?-1,4 no interior da sua cadeia principal, produzindo xilooligossacarídeos de diferentes tamanhos. Na natureza, essas enzimas estão intimamente relacionadas ao fornecimento de energia para o desenvolvimento dos organismos que as produzem. Em geral, as xilanases são isoladas preferencialmente de bactérias e fungos, e têm demonstrado grande potencial na produção de pães, ração animal, alimentos, bebidas, xilitol e bioetanol. O presente trabalho propôs o isolamento de uma nova endo-1,4-?-xilanase por meio de técnicas de produção e purificação acessíveis que pudessem viabilizar economicamente a integração desse biocatalisador aos processos industriais. O fungo Aspergillus tamarii Kita, oriundo de uma amostra de solo da Mata Atlântica, mostrou-se um bom produtor de xilanases em meio de cultura Adams suplementado com bagaço de cevada, um subproduto das indústrias cervejeiras. Após a otimização do processo de fermentação submersa, o extrato enzimático exibiu duas xilanases em gel de atividade para proteínas nativas, identificadas por espectrometria de massas como glicosil hidrolases pertencentes às famílias 10 e 11. A sacarificação enzimática de três resíduos agroindustriais, com base em um delineamento experimental de misturas, demonstrou que a combinação ternária desses componentes, em iguais proporções, possui considerável relevância para a produção de açúcares fermentáveis, tais como glicose e xilose. Em ensaios de imobilização, a xilanase GH11 foi satisfatoriamente estabilizada em matrizes de caráter iônico e covalente. A imobilização por ligação covalente multipontual em glioxil-agarose elevou a temperatura ótima de atividade de 60 para 65 °C e ofertou um considerável ganho de termoestabilidade ao derivado, que apresentou meia vida de 60 minutos a 80 °C. Além disso, a estabilização da enzima nesse suporte permitiu a produção dos seguintes xilooligossacarídeos: xilobiose, xilotriose, xilotetraose e xilopentaose. A purificação da xilanase GH11 foi realizada por meio de uma única etapa cromatográfica de troca catiônica, com rendimento final de 36,72% e um fator de purificação de 7,43 vezes. A massa molecular da enzima foi estimada em 19,5 kDa. Ademais, a sua estrutura tridimensional foi predita por modelagem comparativa, exibindo como modelo final uma arquitetura do tipo ?-jelly roll, comum às xilanases da família 11. Em ensaios de caracterização, a xilanase apresentou melhor atividade em pH 5,5 e manteve atividade residual superior a 80% na faixa de pH compreendida entre 4,0 e 9,0, durante 24 horas. Em relação à temperatura, a sua atividade ótima foi observada a 60 °C, contudo, a sua termoestabilidade foi mais expressiva a 50 °C, retendo cerca de 70% da sua atividade inicial por 480 minutos. Para a xilana beechwood, os valores de velocidade máxima e constante de dissociação aparente foram iguais a 1.330,20 µmol/min/mg e 8,13 mg/mL, respectivamente. Na concentração de 5 mM, os metais pesados Co2+, Hg+, Pb2+ e Zn2+ apresentaram um ponderável efeito de inibição sobre a xilanase GH11, enquanto que os íons Ba2+ e Ni2+, assim como os compostos ?-mercaptoetanol e DTT, exibiram um aumento superior a 20% em sua atividade. Por fim, a análise em tempo real da atividade xilanásica revelou que o substrato xilopentaose corresponde ao menor xilooligossacarídeo capaz de ser eficientemente hidrolisado. Sendo assim, a nova endo-xilanase GH11 isolada do fungo A. tamarii Kita exibe uma série de propriedades físico-químicas favoráveis a sua aplicabilidade em escala industrial. / The endo-1,4-?-xylanases (EC 3.2.1.8) form the largest group of hydrolytic enzymes involved in the degradation of xylan, since they catalyze the random hydrolysis of ?-1,4 glycosidic bonds within the main chain of this polysaccharide, producing xylooligosaccharides of different sizes. In nature, these enzymes are closely related to supplying energy for the development of the organisms that produce them. In general, xylanases are preferentially isolated from bacteria and fungi, which show great potential in industries as brewing, animal feed, food, beverage, xylitol and bioethanol. The present work proposed the isolation of a new endo-1,4-?-xylanase by available techniques of production and purification that can economically make feasible the integration of this biocatalyst to industrial processes. The fungus Aspergillus tamarii Kita, obtained from a soil sample of the Atlantic Forest, showed to be a good xylanase producer in Adams culture medium supplemented with barley bagasse, a byproduct of breweries. After the optimization of the submerged fermentation process, the crude enzymatic extract exhibited two xylanases in activity gel for native proteins, identified by mass spectrometry as glycosyl hydrolases belonging to families 10 and 11. The enzymatic saccharification of three agroindustrial residues, based on an experimental mixture design, showed that the ternary combination of these components, in equal proportions, has considerable relevance for the production of fermentable sugars, such as glucose and xylose. The xylanase GH11 was satisfactorily stabilized on matrices of ionic and covalent character in immobilization assays. Covalent multipoint immobilization on glyoxyl agarose raised its optimum temperature of activity from 60 to 65 °C and offered a considerable gain in thermostability to the derivative, which presented a half-life of 60 minutes at 80 °C. In addition, enzyme stabilization on this support allowed the production of the following xylooligosaccharides: xylobiose, xylotriose, xylotetraose and xylopentaose. Xylanase GH11 purification was carried out by means of a single cation exchange chromatographic step, with final yield of 36.72% and purification factor of 7.43 times. The molecular mass of this xylanase was estimated as 19.5 kDa. Moreover, its three-dimensional structure was predicted by comparative modeling, exhibiting a ?-jelly roll type folding as a final model, common to xylanases of family 11. In characterization tests, xylanase presented better activity at pH 5.5 and was considerably stable in the pH range of 4.0 to 9.0. Regarding temperature, its optimum activity was observed at 60 °C, however, its thermostability was more expressive at 50 °C, retaining about 70% of its initial activity for 480 minutes. In the presence of beechwood xylan, the values of maximum velocity and the constant of apparent dissociation were 1,330.20 µmol/min/mg and 8.13 mg/mL, respectively. At concentrations of 5 mM, the heavy metals Co2+, Hg+, Pb2+ and Zn2+showed an inhibition effect on the xylanase, whereas Ba2+ and Ni2+ ions, as well as ?-mercaptoethanol and DTT, exhibited an increase of more than 20% in their activity. Finally, the real-time analysis of xylanase activity revealed that the xylopentose substrate corresponds to the lowest xylooligosaccharide capable of being hydrolyzed. Thus, the new endo-xylanase GH11 isolated from the fungus A. tamarii Kita exhibits a series of physicochemical properties favorable to its applicability on an industrial scale.
16

Estudo das propriedades físico-químicas e funcionais de uma endo-1,4-B-xilanase de Aspergillus tamarii Kita e a sua aplicação na produção de xilooligossacarídeos / Study of the physical-chemical and functional properties of an endo-1,4-B-xylanase from Aspergillus tamarii Kita and its application in the production of xylooligosaccharides

Paulo Ricardo Heinen 13 December 2017 (has links)
As endo-1,4-?-xilanases (EC 3.2.1.8) formam o maior grupo de enzimas hidrolíticas envolvido na degradação da xilana, visto que catalisam a hidrólise aleatória de ligações glicosídicas do tipo ?-1,4 no interior da sua cadeia principal, produzindo xilooligossacarídeos de diferentes tamanhos. Na natureza, essas enzimas estão intimamente relacionadas ao fornecimento de energia para o desenvolvimento dos organismos que as produzem. Em geral, as xilanases são isoladas preferencialmente de bactérias e fungos, e têm demonstrado grande potencial na produção de pães, ração animal, alimentos, bebidas, xilitol e bioetanol. O presente trabalho propôs o isolamento de uma nova endo-1,4-?-xilanase por meio de técnicas de produção e purificação acessíveis que pudessem viabilizar economicamente a integração desse biocatalisador aos processos industriais. O fungo Aspergillus tamarii Kita, oriundo de uma amostra de solo da Mata Atlântica, mostrou-se um bom produtor de xilanases em meio de cultura Adams suplementado com bagaço de cevada, um subproduto das indústrias cervejeiras. Após a otimização do processo de fermentação submersa, o extrato enzimático exibiu duas xilanases em gel de atividade para proteínas nativas, identificadas por espectrometria de massas como glicosil hidrolases pertencentes às famílias 10 e 11. A sacarificação enzimática de três resíduos agroindustriais, com base em um delineamento experimental de misturas, demonstrou que a combinação ternária desses componentes, em iguais proporções, possui considerável relevância para a produção de açúcares fermentáveis, tais como glicose e xilose. Em ensaios de imobilização, a xilanase GH11 foi satisfatoriamente estabilizada em matrizes de caráter iônico e covalente. A imobilização por ligação covalente multipontual em glioxil-agarose elevou a temperatura ótima de atividade de 60 para 65 °C e ofertou um considerável ganho de termoestabilidade ao derivado, que apresentou meia vida de 60 minutos a 80 °C. Além disso, a estabilização da enzima nesse suporte permitiu a produção dos seguintes xilooligossacarídeos: xilobiose, xilotriose, xilotetraose e xilopentaose. A purificação da xilanase GH11 foi realizada por meio de uma única etapa cromatográfica de troca catiônica, com rendimento final de 36,72% e um fator de purificação de 7,43 vezes. A massa molecular da enzima foi estimada em 19,5 kDa. Ademais, a sua estrutura tridimensional foi predita por modelagem comparativa, exibindo como modelo final uma arquitetura do tipo ?-jelly roll, comum às xilanases da família 11. Em ensaios de caracterização, a xilanase apresentou melhor atividade em pH 5,5 e manteve atividade residual superior a 80% na faixa de pH compreendida entre 4,0 e 9,0, durante 24 horas. Em relação à temperatura, a sua atividade ótima foi observada a 60 °C, contudo, a sua termoestabilidade foi mais expressiva a 50 °C, retendo cerca de 70% da sua atividade inicial por 480 minutos. Para a xilana beechwood, os valores de velocidade máxima e constante de dissociação aparente foram iguais a 1.330,20 µmol/min/mg e 8,13 mg/mL, respectivamente. Na concentração de 5 mM, os metais pesados Co2+, Hg+, Pb2+ e Zn2+ apresentaram um ponderável efeito de inibição sobre a xilanase GH11, enquanto que os íons Ba2+ e Ni2+, assim como os compostos ?-mercaptoetanol e DTT, exibiram um aumento superior a 20% em sua atividade. Por fim, a análise em tempo real da atividade xilanásica revelou que o substrato xilopentaose corresponde ao menor xilooligossacarídeo capaz de ser eficientemente hidrolisado. Sendo assim, a nova endo-xilanase GH11 isolada do fungo A. tamarii Kita exibe uma série de propriedades físico-químicas favoráveis a sua aplicabilidade em escala industrial. / The endo-1,4-?-xylanases (EC 3.2.1.8) form the largest group of hydrolytic enzymes involved in the degradation of xylan, since they catalyze the random hydrolysis of ?-1,4 glycosidic bonds within the main chain of this polysaccharide, producing xylooligosaccharides of different sizes. In nature, these enzymes are closely related to supplying energy for the development of the organisms that produce them. In general, xylanases are preferentially isolated from bacteria and fungi, which show great potential in industries as brewing, animal feed, food, beverage, xylitol and bioethanol. The present work proposed the isolation of a new endo-1,4-?-xylanase by available techniques of production and purification that can economically make feasible the integration of this biocatalyst to industrial processes. The fungus Aspergillus tamarii Kita, obtained from a soil sample of the Atlantic Forest, showed to be a good xylanase producer in Adams culture medium supplemented with barley bagasse, a byproduct of breweries. After the optimization of the submerged fermentation process, the crude enzymatic extract exhibited two xylanases in activity gel for native proteins, identified by mass spectrometry as glycosyl hydrolases belonging to families 10 and 11. The enzymatic saccharification of three agroindustrial residues, based on an experimental mixture design, showed that the ternary combination of these components, in equal proportions, has considerable relevance for the production of fermentable sugars, such as glucose and xylose. The xylanase GH11 was satisfactorily stabilized on matrices of ionic and covalent character in immobilization assays. Covalent multipoint immobilization on glyoxyl agarose raised its optimum temperature of activity from 60 to 65 °C and offered a considerable gain in thermostability to the derivative, which presented a half-life of 60 minutes at 80 °C. In addition, enzyme stabilization on this support allowed the production of the following xylooligosaccharides: xylobiose, xylotriose, xylotetraose and xylopentaose. Xylanase GH11 purification was carried out by means of a single cation exchange chromatographic step, with final yield of 36.72% and purification factor of 7.43 times. The molecular mass of this xylanase was estimated as 19.5 kDa. Moreover, its three-dimensional structure was predicted by comparative modeling, exhibiting a ?-jelly roll type folding as a final model, common to xylanases of family 11. In characterization tests, xylanase presented better activity at pH 5.5 and was considerably stable in the pH range of 4.0 to 9.0. Regarding temperature, its optimum activity was observed at 60 °C, however, its thermostability was more expressive at 50 °C, retaining about 70% of its initial activity for 480 minutes. In the presence of beechwood xylan, the values of maximum velocity and the constant of apparent dissociation were 1,330.20 µmol/min/mg and 8.13 mg/mL, respectively. At concentrations of 5 mM, the heavy metals Co2+, Hg+, Pb2+ and Zn2+showed an inhibition effect on the xylanase, whereas Ba2+ and Ni2+ ions, as well as ?-mercaptoethanol and DTT, exhibited an increase of more than 20% in their activity. Finally, the real-time analysis of xylanase activity revealed that the xylopentose substrate corresponds to the lowest xylooligosaccharide capable of being hydrolyzed. Thus, the new endo-xylanase GH11 isolated from the fungus A. tamarii Kita exhibits a series of physicochemical properties favorable to its applicability on an industrial scale.
17

PRODUÇÃO, PURIFICAÇÃO PARCIAL E CARACTERIZAÇÃO BIOQUÍMICA DE GLUCOAMILASE DE Aspergillus niger OBTIDA POR FERMENTAÇÃO EM ESTADO SÓLIDO

Slivinski, Christiane Trevisan 29 August 2007 (has links)
Made available in DSpace on 2017-07-21T18:53:24Z (GMT). No. of bitstreams: 0 Previous issue date: 2007-08-29 / Glucoamylase is one of main enzymes responsible for the hydrolysis of starch to form the glucose syrup, raw material used by the food industry for the production of cool drinks, ice creams, sauces, breads and as carbon source in fermentations. The enzyme is normally produced by filamentous fungi. In the present work glucoamylase was produced by Aspergillus niger through solid-state fermentation, using the industrial waste of potato processing, during a period of 48 h at 32 ºC. The biochemical characterization of the rude enzymatic preparation showed as the optimum performance pH band near 5,0 and as the optimum temperature 60 ºC, with an average activity of 11,87 U/mL. After 26 hours of incubation of this preparation, the glucoamylase kept 58,75 % (9,70 U/mL) and 60,33 % (9,96 U/mL) of its activity at 35 and 60 ºC respectively; after 28 hours of incubation in pH 4,6, it kept 72,87 % (8,88 U/mL) of residual activity. The kinetic parameters for the hydrolysis of soluble starch were Km = 1,68 mg/mL and Vmáx = 41,15 U/mL. The enzyme was partially purified through i) precipitation with ammonium sulphate between 60-85 % of saturation ii) anion-exchange chromatography in Q-Sepharose and iii) gel filtration chromatography in Sephadex G-100, with a purification factor of 109,23 fold and a yield of 11,71 %. The eletrophoretic analyses demonstrated that the studied glucoamylase presents molar mass around 130,88 kDa. After submitted to the purification steps, the enzyme kept the same optimum conditions of pH and temperature of the raw preparation, with 152,85 U/mL of average activity. With regard to stability, after 4 hours of incubation in pH 5,0, the glucoamylase presented 83 % (124,99 U/mL) of residual enzymatic activity, whereas after 8 hours only 22,72 % (34,22 U/mL) remained. Concerning temperatures, greater stability was observed at 35 and 15 ºC, in which after 24 hours of incubation 87 % (131,14 U/mL) and 85 % (127,77 U/mL) of the catalytic capacity remained, respectively. The values of Km and Vmáx for the partially purified glucoamylase were 0,049 mg/mL and 163,93 U/mL. / A glucoamilase, enzima normalmente produzida por fungos filamentosos, é uma das principais responsáveis pela hidrólise do amido para a formação de xarope de glucose,matéria-prima utilizada pela indústria de alimentos na produção de refrigerantes, sorvetes, molhos, pães e como fonte de carbono em fermentações. No presente trabalho, a lucoamilase foi produzida por Aspergillus niger através de fermentação em estado sólido, utilizando como substrato resíduo de uma indústria de processamento de batata, por um período de 48 horas a 32 ºC. A caracterização bioquímica da preparação enzimática bruta mostrou como faixa de pH ótimo para atuação, valores próximos a 5,0 e temperatura ótima 60 ºC, com atividade média de 11,87 U/mL. Ensaios de estabilidade térmica indicaram que após 26 horas de incubação a glucoamilase manteve 58,75 % (9,70 U/mL) e 60,33 % (9,96 U/mL) de sua atividade a 35 ºC e 60 ºC respectivamente. Ensaios de pH mostraram como o de maior estabilidade 4,6, no qual após 28 horas obteve-se 72,87 % (8,88 U/mL) de atividade residual. Os parâmetros cinéticos para a hidrólise do amido solúvel foram Km = 1,68 mg/mL e Vmáx = 41,15 U/mL. A enzima foi parcialmente purificada através de i) precipitação com sulfato de amônio entre 60-85 % de saturação, ii) cromatografia de troca aniônica em Q-Sepharose e iii) cromatografia de filtração em gel em Sephadex G-100 com um fator de purificação de 109,23 vezes e rendimento de 11,71 %. As análises eletroforéticas estimaram a massa molecular da glucoamilase estudada em torno de 130,88 kDa. Após ser submetida às etapas de purificação, a enzima manteve as condições ótimas de pH entre 4,5 e 5,0 e de temperatura 60 ºC, com atividade média de 152,85 U/mL. Com relação à estabilidade, após 4 horas de incubação em pH 5,0, a glucoamilase apresentou 83 % (124,99 U/mL) de atividade enzimática residual e após 8 horas no mesmo pH apenas 22,72 % (34,22 U/mL). Foram testadas e encontradas como temperaturas de estabilidade 15 e 35 ºC, remanescendo após 24 horas de incubação 85 % (127,77 U/mL) e 87 % (131,14 U/mL) da capacidade catalítica, respectivamente. Os valores de Km e Vmáx para a glucoamilase parcialmente purificada foram 0,049 mg/mL e 163,93 U/mL.
18

Caracterização bioquímica e funcional de um inibidor recombinante de miotoxinas, do tipo-?, da serpente Bothrops alternatus / Biochemical and functional characterization of a recombinant alpha-type myotoxin inhibitor from Bothrops alternatus snake

Sousa, Tiago Sampaio de 30 September 2015 (has links)
Fosfolipases A2 (PLA2s) são enzimas abundantes em peçonhas de serpentes do gênero Bothrops, possuindo uma grande variedade de efeitos farmacológicos e/ou tóxicos, como miotóxico, causador de necrose muscular. Em busca de novos fármacos de interesse médico e científico, os inibidores de fosfolipases A2 (PLIs) tornaram-se importantes alvos de pesquisa nos últimos anos. Tendo isto em vista, o presente trabalho teve como objetivo a caracterização bioquímica e funcional de um inibidor de fosfolipase A2 miotóxica do tipo alfa (?BaltMIP) de B. alternatus em sua forma recombinante. Para os estudos de neutralização funcional foram utilizadas as toxinas da peçonha de Bothrops jararacussu: Lys49 PLA2-símile BthTX-I e a Asp49 PLA2 BthTX-II. O processo de purificação das toxinas de B. jararacussu consistiu em dois passos cromatográficos: exclusão molecular seguida de troca iônica, sendo o grau de pureza avaliado por HPLC. A expressão heteróloga do inibidor recombinante ?-BaltMIP foi induzida em leveduras Pichia pastoris. O inibidor purificado, denominado rBaltMIP, apresentou-se como uma proteína pura com pI de 5,8, massa molecular de ~21 kDa por SDS-PAGE e 19,5 kDa por MALDI/TOF MS e com conteúdo de carboidratos de 10%. Após o sequenciamento dos peptídeos trípticos obtidos, os resultados foram comparados com outros ?PLIs depositados em bancos de dados, observando-se 100% de identidade entre o rBaltMIP e o seu inibidor nativo ?BaltMIP, e de 92 a 96% com os demais inibidores analisados. Para as toxinas BthTX-I e BthTX-II, as concentrações efetivas (CE50) para as atividades miotóxicas medidas através dos níveis plasmáticos de CK foram de 0,1256 ?g/?L e de 0,6183 ?g/?L, respectivamente, e quando incubadas com o rBaltMIP houve neutralização de até 65% da miotoxicidade induzida por estas enzimas. Já nos ensaios de formação de edema de pata, foram obtidas as CE50 de 0,02581 ?g/?L e 0,02810 ?g/?L, respectivamente, com neutralização do edema pelo rBaltMIP de até 40%, mostrando-se um inibidor viável para complementar a soroterapia antiofídica sem, no entanto, ser imunogênico. Reforçando esta hipótese, experimentos de neutralização da miotoxicidade feitos com a miotoxina BthTX-I mostraram que o rBaltMIP foi mais eficiente em inibir os danos musculares que o próprio soro antiofídico quando usado isoladamente. Assim, devido a gravidade dos envenenamentos e a baixa neutralização de seus efeitos locais, como a miotoxicidade, pelo soro antiofídico usado atualmente, o estudo do rBaltMIP como inibidor de PLA2s do grupo II de serpentes torna-se promissor devido às suas possíveis aplicações clínicas, podendo neutralizar com maior rapidez, eficiência e especificidade as ações tóxicas de peçonhas ofídicas. / Phospholipases A2 are abundant enzymes present in Bothrops venoms which have a wide variety of pharmacological and/or toxic effects, such as myotoxicity, related to muscle necrosis. In search for new drugs of medical and scientific interest, the phospholipase A2 inhibitors (PLls) have become important targets in recent years. Considering this, the present study aimed at the biochemical and functional characterization of an alpha type phospholipase A2 inhibitor (?-BaltMIP) from B. alternatus in its recombinant form. For the functional neutralization studies, toxins from Bothrops jararacussu venom were used: Lys49 PLA2-like BthTX-I and Asp49 PLA2 BthTX-II. The process of purification of B. jararacussu toxins consisted of two chromatographic steps: molecular exclusion followed by ion exchange, evaluating their purity by HPLC. The heterologous expression of the recombinant ?BaltMIP inhibitor was induced in Pichia pastoris yeast. The purified inhibitor, called rBaltMIP, presented itself as a pure protein with pI of 5.8, molecular mass of ~21 kDa by SDS-PAGE and 19.5 kDa by MALDI/TOF MS, with 10% carbohydrate content. After tryptic peptides sequencing, the results were compared with other ?PLIs deposited in databases, observing a 100% identity between rBaltMIP and its native inhibitor ?BaltMIP, and from 92 to 96% identity with the other analyzed inhibitors. Toxins BthTX-I and BthTX-II showed effective concentrations (EC50) for myotoxic activities measured via plasma CK levels of 0.1256 ?g/?L and 0.6183 ?g/?L, respectively, and incubation with rBaltMIP indicated neutralization of up to 65% of myotoxicity. In paw edema formation assays, EC50 of 0.02581 ?g/?L and 0.02810 ?g/?L, respectively, were observed, with edema neutralizations of up to 40% by rBaltMIP, showing viability to complement antivenoms without, however, being immunogenic. Reinforcing this hypothesis, myotoxicity neutralization experiments performed with the myotoxin BthTX-I showed that rBaltMIP was more effective in inhibiting muscle damage than the actual antivenom by itself. Thus, considering the severity of envenomations and the low neutralization of their local effects, such as myotoxicity, by the antivenoms currently used, the study of rBaltMIP as a PLA2 inhibitor becomes promising due to its possible clinical applications, neutralizing quickly and with more efficiency and specificity the toxic actions of venoms
19

Biochemical Characterization of a Cp-3-O-GT Mutant P145T and Study of the Tags Effect on GT Activity

Kandel, Sangam, Shivakumar, Devaiah P., McIntosh, Cecelia A. 08 August 2016 (has links)
Glucosyltransferases catalyze glucosylation by transferring glucose from UDP-activated sugar donor to the acceptor substrates. This research is focused on the study of the effect of a single point mutation on enzyme activity, characterization of a flavonol specific 3-Oglucosyltransferase (Cp-3-O-GT) mutant- P145T, and further modification of the clone to cleave off tags from recombinant wild type and P145T mutant proteins in order to crystallize the proteins. Multiple sequence alignment and homology modeling was done to identify candidate residues for mutation. Cp-3-O-GT was modeled with a flavonoid 3-O-GT from Vitis vinifera (VvGT) that can glucosylate both flavonols and anthocyanidins. We identified a proline residue at position 145 of Cp-3-O-GT that corresponded to a threonine residue in VvGT and designed a Cp-3-O-GT- P145T mutant to test the hypothesis that that mutation of proline by threonine in Cp-3-O-GT could alter substrate or regiospecificity of Cp-3-O-GT. While the mutant P145T enzyme did not glucosylate anthocyanidins, it did glucosylate flavanones and flavones in addition to flavonols. This is significant because flavanones and flavones do not contain a 3-OH group. HPLC was performed to identify the reaction products. Early results indicated that the mutant protein glucosylates naringenin at the 7-OH position forming prunin. Results are being used to revisit and refine the structure model. In other related work, a thrombin cleavage site was inserted into wild type and recombinant P145Tenzyme and we are currently working on transformation into yeast for recombinant protein expression. Cleaving off tags is a pre-requisite to future efforts to crystallize the proteins. Solving the crustal structures will make a significant contribution to the structural and functional study of plant flavonoid GTs in general and Cp-3-O-GT in particular.
20

Expression and Biochemical Characterization of Two Glucosyltransferases from Citrus paradisi

Devaiah, Shivakumar P., McIntosh, Cecelia A. 12 August 2012 (has links)
Glucosylation is a common alteration reaction in plant metabolism and is regularly associated with the production of secondary metabolites. Glucosylation serves a number of roles within metabolism including: stabilizing structures, affecting solubility, transport, and regulating the bioavailability of the compounds for other metabolic processes. The enzymes that lead to glucoside formation are known as glucosyltransferases (GTs), and characteristically accomplish this task by transferring a UDP-activated glucose to a corresponding acceptor molecule. GTs involved in secondary metabolism share a conserved 44 amino acid residue motif (60–80% identity) known as the plant secondary product glucosyltransferase (PSPG) box, which has been demonstrated to include the UDP-sugar binding moiety. Among the secondary metabolites, flavonoid glycosides and limonoid glycosides affect taste characteristics in citrus making the associated glucosyltransferases particularly interesting targets for biotechnology applications in these species. The research focus of our lab is to establish the function of putative secondary product glucosyltransferase clones identified from Citrus paradisi. In the present study, we report on the activity and biochemical characterization of two clones, PGT 7 (Flavonol-3-O-GT) and PGT8 (Limonoid GT) which were expressed in Pichia pastoris.

Page generated in 0.1662 seconds