• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 187
  • 133
  • 31
  • 11
  • 8
  • 8
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 484
  • 148
  • 75
  • 73
  • 47
  • 45
  • 44
  • 43
  • 43
  • 42
  • 40
  • 39
  • 37
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Electrochemical behaviors of micro-arc oxidation coated magnesium alloy

Liu, Jiayang January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In recent years, magnesium alloys, due to their high strength and biocompatibility, have attracted significant interest in medical applications, such as cardiovascular stents, orthopedic implants, and devices. To overcome the high corrosion rate of magnesium alloys, coatings have been developed on the alloy surface. Most coating methods, such as anodic oxidation, polymer coating and chemical conversion coating, cannot produce satisfactory coating to be used in human body environment. Recent studies demonstrate that micro-arc oxidation (MAO) technique can produce hard, dense, wear-resistant and well-adherent oxide coatings for light metals such as aluminum, magnesium, and titanium. Though there are many previous studies, the understanding of processing conditions on coating performance remains elusive. Moreover, previous tests were done in simulated body fluid. No test has been done in a cell culture medium, which is much closer to human body environment than simulated body fluid. In this study, the effect of MAO processing time (1 minute, 5 minutes, 15 minutes, and 20 minutes) on the electrochemical behaviors of the coating in both conventional simulated body fluid and a cell culture medium has been investigated. Additionally a new electrolyte (12 g/L Na2SiO3, 4 g/L NaF and 4 ml/L C3H8O3) has been used in the MAO coating process. Electrochemical behaviors were measured by performing potentiodynamic polarization and electrochemical impedance spectroscopy tests. In addition to the tests in simulated body fluid, the MAO-coated and uncoated samples were immersed in a cell culture medium to investigate the corrosion behaviors and compare the difference in these two kinds of media. The results show that in the immersion tests in conventional simulated body fluid, the 20-minute MAO coated sample has the best resistance to corrosion due to the largest coating thickness. In contrast, in the cell culture medium, all MAO coated samples demonstrate a similar high corrosion resistance behavior, independent of MAO processing time. This is probably due to the organic passive layers formed on the coating surfaces. Additionally, a preliminary finite element model has been developed to simulate the immersion test of magnesium alloy in simulated body fluid. Comparison between the predicted corrosion current density and experimental data is discussed.
482

Kompozitní stomatologické biomateriály - struktura, analýza a vlastnosti / Composite Dental Biomaterials - Structure, Analysis and Properties

Matoušek, Aleš January 2012 (has links)
The aim of this work is to define relations between grain size and bioaktivity of oxide ceramics, specifically ZrO2, Al2O3 and HA. Ceramic materials with grain size from 100 nm up to 10 m, with various surface roughness, were tested for its bioactivity. Ceramography analysis was performed for all tested materials to precisely describe microstructures. Biological properties of the ceramic materials were tested via dilation tests directly in-vitro and by in-vitro extraction. Three cell culturing lines: osteoblast MG63, fibroblast L929, and epithelioid HeLa, were used for our testing. An influence of the grain size on the biological response was only found for the ceramic materials which had been thermally etched. The thermally etched nanocrystalline samples had larger areas covered by cells than ceramics with coarse grain microstructure. Biological tests on layered composites Al2O3×ZrO2 showed the cell selection determined by the type of material, where ZrO2 surfaces were preferably covered. Improved biological response of nanocrystalline ZrO2 was demonstrated on ceramic ZrO2, Al2O3 and SiO2 substrates with nanocrystalline coating of ZrO2. In this work a novel technological process for the formation of defect-free coatings was developed. Sintered coatings were tested using in-vitro technique with cell line HeLa, L929 and MG63 for up to 72 hours. The results of the biological tests of nanocrystalline coatings were consistent with results from the bulk nanocrystalline thermally etched ZrO2 ceramics.
483

Hydroxylapatit-Verbundwerkstoffe und -Biokeramiken mit parallel orientierten Porenkanälen für das Tissue Engineering von Knochen

Despang, Florian 08 October 2012 (has links)
Für das Tissue Engineering von Knochen werden poröse dreidimensionale Substrate (Scaffolds) als Zellträger benötigt, die in der vorliegenden Arbeit über keramische Technologie hergestellt wurden. Neben dem strukturierten und getrockneten Verbundwerkstoff (Grünkörper) und der Sinterkeramik wurde auch der Zwischenzustand nach Ausheizen der organischen Phase (Braunkörper) evaluiert. Bei der Herstellung blieb die Architektur der parallel orientierten Kanalporen, die über den Sol-Gel-Prozess der gerichteten ionotropen Gelbildung des Alginates erzeugt wurde, in allen Materialzuständen erhalten. Die Herstellungstechnologie wurde derart optimiert, dass die neuartigen anisotropen Scaffolds allen prinzipiell gestellten Forderungen für das Tissue Engineering entsprachen – sie waren porös mit weithin einstellbarer Porengröße, sterilisierbar, gut handhabbar unter Zellkulturbedingungen, biokompatibel und degradabel. Der unerwartete Favorit der Biomaterialentwicklung, der Braunkörper – eine nanokristalline, poröse Hydroxylapatit-Biokeramik – lag in einer ersten in vivo-Studie nach 4 Wochen integriert im Knochen vor. Die beobachtete Knochenneubildung deutete auf eine osteokonduktive Wirkung des Materials hin. Die in der vorliegenden Arbeit untersuchten Technologien und Biomaterialien bieten eine Basis für weitere Forschung und motivieren zur Weiterentwicklung und Nutzung als Scaffold für das Tissue Engineering oder Knochenersatzmaterial unter Verwendung der interessanten Architektur.
484

Chondroitin-based nanoplexes as peptide delivery systems-Investigations into the self-assembly process, solid-state and extended release characteristics

Umerska, A., Paluch, Krzysztof J., Santos-Martinez, M.J., Medina, C., Corrigan, O.I., Tajber, L. 20 April 2015 (has links)
Yes / A new type of self-assembled polyelectrolyte complex nanocarrier composed of chondroitin (CHON) and protamine (PROT) was designed and the ability of the carriers to bind salmon calcitonin (sCT) was examined. The response of sCT-loaded CHON/PROT NPs to a change in the properties of the liquid medium, e.g. its pH, composition or ionic strength was studied and in vitro peptide release was assessed. The biocompatibility of the NPs was evaluated in Caco-2 cells. CHON/PROT NPs were successfully obtained with properties that were dependent on the concentration of the polyelectrolytes and their mixing ratio. X-ray diffraction determined the amorphous nature of the negatively charged NPs, while those with the positive surface potential were semi-crystalline. sCT was efficiently associated with the nanocarriers (98-100%) and a notably high drug loading (13-38%) was achieved. The particles had negative zeta potential values and were homogenously dispersed with sizes between 60 and 250 nm. CHON/PROT NPs released less than 10% of the total loaded peptide in the first hour of the in vitro release studies. The enthalpy of the decomposition exotherm correlated with the amount of sCT remaining in NPs after the release experiments. The composition of medium and its ionic strength was found to have a considerable influence on the release of sCT from CHON/PROT NPs. Complexation to CHON markedly reduced the toxic effects exerted by PROT and the NPs were compatible and well tolerated by Caco-2 cells.

Page generated in 0.0692 seconds