• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantitative Phenotyping in Tissue Microenvironments

Singh, Shantanu 29 July 2011 (has links)
No description available.
2

Machine learning for blob detection in high-resolution 3D microscopy images

Ter Haak, Martin January 2018 (has links)
The aim of blob detection is to find regions in a digital image that differ from their surroundings with respect to properties like intensity or shape. Bio-image analysis is a common application where blobs can denote regions of interest that have been stained with a fluorescent dye. In image-based in situ sequencing for ribonucleic acid (RNA) for example, the blobs are local intensity maxima (i.e. bright spots) corresponding to the locations of specific RNA nucleobases in cells. Traditional methods of blob detection rely on simple image processing steps that must be guided by the user. The problem is that the user must seek the optimal parameters for each step which are often specific to that image and cannot be generalised to other images. Moreover, some of the existing tools are not suitable for the scale of the microscopy images that are often in very high resolution and 3D. Machine learning (ML) is a collection of techniques that give computers the ability to ”learn” from data. To eliminate the dependence on user parameters, the idea is applying ML to learn the definition of a blob from labelled images. The research question is therefore how ML can be effectively used to perform the blob detection. A blob detector is proposed that first extracts a set of relevant and nonredundant image features, then classifies pixels as blobs and finally uses a clustering algorithm to split up connected blobs. The detector works out-of-core, meaning it can process images that do not fit in memory, by dividing the images into chunks. Results prove the feasibility of this blob detector and show that it can compete with other popular software for blob detection. But unlike other tools, the proposed blob detector does not require parameter tuning, making it easier to use and more reliable. / Syftet med blobdetektion är att hitta regioner i en digital bild som skiljer sig från omgivningen med avseende på egenskaper som intensitet eller form. Biologisk bildanalys är en vanlig tillämpning där blobbar kan beteckna intresseregioner som har färgats in med ett fluorescerande färgämne. Vid bildbaserad in situ-sekvensering för ribonukleinsyra (RNA) är blobbarna lokala intensitetsmaxima (dvs ljusa fläckar) motsvarande platserna för specifika RNA-nukleobaser i celler. Traditionella metoder för blob-detektering bygger på enkla bildbehandlingssteg som måste vägledas av användaren. Problemet är att användaren måste hitta optimala parametrar för varje steg som ofta är specifika för just den bilden och som inte kan generaliseras till andra bilder. Dessutom är några av de befintliga verktygen inte lämpliga för storleken på mikroskopibilderna som ofta är i mycket hög upplösning och 3D. Maskininlärning (ML) är en samling tekniker som ger datorer möjlighet att “lära sig” från data. För att eliminera beroendet av användarparametrar, är tanken att tillämpa ML för att lära sig definitionen av en blob från uppmärkta bilder. Forskningsfrågan är därför hur ML effektivt kan användas för att utföra blobdetektion. En blobdetekteringsalgoritm föreslås som först extraherar en uppsättning relevanta och icke-överflödiga bildegenskaper, klassificerar sedan pixlar som blobbar och använder slutligen en klustringsalgoritm för att dela upp sammansatta blobbar. Detekteringsalgoritmen fungerar utanför kärnan, vilket innebär att det kan bearbeta bilder som inte får plats i minnet genom att dela upp bilderna i mindre delar. Resultatet visar att detekteringsalgoritmen är genomförbar och visar att den kan konkurrera med andra populära programvaror för blobdetektion. Men i motsats till andra verktyg behöver den föreslagna detekteringsalgoritmen inte justering av sina parametrar, vilket gör den lättare att använda och mer tillförlitlig.
3

Cell segmentation and tracking via proposal generation and selection

Akram, S. U. (Saad Ullah) 20 November 2017 (has links)
Abstract Biology and medicine rely heavily on images to understand how the body functions, for diagnosing diseases and to test the effects of treatments. In recent decades, microscopy has experienced rapid improvements, enabling imaging of fixed and living cells at higher resolutions and frame rates, and deeper inside the biological samples. This has led to rapid growth in the image data. Automated methods are needed to quantitatively analyze these huge datasets and find statistically valid patterns. Cell segmentation and tracking is critical for automated analysis, yet it is a challenging problem due to large variations in cell shapes and appearances caused by various factors, including cell type, sample preparation and imaging setup. This thesis proposes novel methods for segmentation and tracking of cells, which rely on machine learning based approaches to improve the performance, generalization and reusability of automated methods. Cell proposals are used to efficiently exploit spatial and temporal context for resolving detection ambiguities in high-cell-density regions, caused by weak boundaries and deformable shapes of cells. This thesis presents two cell proposal methods: the first method uses multiple blob-like filter banks for detecting candidates for round cells, while the second method, Cell Proposal Network (CPN), uses convolutional neural networks to learn the cell shapes and appearances, and can propose candidates for cells in a wide variety of microscopy images. CPN first regresses cell candidate bounding boxes and their scores, then, it segments the regions inside the top ranked boxes to obtain cell candidate masks. CPN can be used as a general cell detector, as is demonstrated by training a single model to segment images from histology, fluorescence and phase-contrast microscopy. This work poses segmentation and tracking as proposal selection problems, which are solved optimally using integer linear programming or approximately using iterative shortest cost path search and non-maximum suppression. Additionally, this thesis presents a method which utilizes graph-cuts and an off-the-shelf edge detector to accurately segment highly deformable cells. The main contribution of this thesis is a cell tracking method which uses CPN to propose cell candidates, represents alternative tracking hypotheses using a graphical model, and selects the globally optimal sub-graph providing cell tracks. It achieves state-of-the-art tracking performance on multiple public benchmark datasets from both phase-contrast and fluorescence microscopy containing cells of various shapes and appearances. / Tiivistelmä Biologia ja lääketiede nojaavat vahvasti kuvatietoon solujen ja kehon toimintojen ymmärtämiseksi sairauksien diagnostiikassa ja hoitojen vaikutusten seuraamisessa. Viime vuosikymmeninä mikroskopiassa on tapahtunut nopeaa teknistä kehitystä, mikä on mahdollistanut elävien solujen kuvantamisen tarkemmin, nopeammin sekä syvemmältä automatisoidusti useasta näytteestä. Tämä taas on johtanut kuvadatan nopeaan kasvuun ja suurempaan määrään biologisia kysymyksiä, joihin voidaan vastata. Kuvadatan räjähdysmäisen kasvun vuoksi kaikkia tuloksia ei voida enää tulkita pelkästään ihmistyövoimaa käyttämällä, mikä on johtanut tarpeeseen kehittää automaattisia menetelmiä analysoimaan kvantitatiivisesti suuria datajoukkoja ja löytämään tilastollisesti kelvollisia malleja. Solujen erottaminen niiden ympäristöstä ja toisista soluista (segmentointi) ja solujen seuranta ovat kriittisiä alkuvaiheen osia onnistuneessa automaattisessa analyysissä. Automaattisten menetelmien kehittämisessä solusegmentointi on kuitenkin osoittautunut hyvin haastavaksi ongelmaksi solujen muodon ja ulkonäön suurten muutosten vuoksi solutyypistä, näytteen valmistelusta ja kuvantamisjärjestelmästä johtuen. Tämä väitöskirja esittää uusia menetelmiä solujen segmentointiin ja seurantaan keskittyen koneoppimiseen perustuviin lähestymistapoihin, jotka parantavat automaattisten menetelmien suorituskykyä ja uudelleenkäytettävyyttä. Spatiaalista ja ajallista kontekstia tehokkaasti hyödyntäviä soluehdotelmia käytetään ratkaisemaan solujen heikosti erottuvista reunoista ja joustavista muodoista johtuvaa solujen muodon monitulkintaisuutta erityisesti silloin kun tutkittava solutiheys on suuri. Tämä väitöskirja esittää kaksi menetelmää soluehdotelmille; ensimmäinen menetelmä käyttää useita läikkätyyppisiä suodatinpankkeja ilmaisemaan kandidaatteja pyöreänmuotoisille soluille, kun taas toinen menetelmä nimeltään soluehdotelmaverkko (Cell Proposal Network, CPN) käyttää konvoluutionaalisia neuroverkkoja oppiakseen tunnistamaan solut niiden muodon sekä ulkonäön perusteella erityyppisissä mikroskooppikuvissa. CPN regressoi ensin solukandidaatteja ympäröivät suorakaiteet ja niiden pistemäärän, jonka jälkeen se segmentoi alueet parhaiten sijoittuneiden suorakaiteiden joukosta tuottaen solukandidaattimaskit. CPN:ää voidaan mahdollisesti käyttää yleisenä soluilmaisimena erityyppisilla kuvantamistekniikoilla tuotetuissa kuvissa mukaan lukien histologisen valo-, fluoresenssi- ja vaihekontrastimikroskooppian. Väitöskirja esittää solujen segmentoinnin ja seurannan soluehdotelmien valintaongelmina, mitkä ratkaistaan joko optimaalisesti käyttämällä kokonaislukuoptimointia tai likimääräisesti käyttämällä iteratiivista lyhimmän kustannuspolun hakua sekä ei-maksimien vaimennusta. Tämä väitöskirja esittää myös verkon leikkaukseen (graph cut) perustuvan menetelmän, mikä hyödyntää valmiiksi saatavilla olevaa reunanilmaisinta segmentoimaan tarkasti muotoaan voimakkaasti muuttavia soluja. Väitöskirjatutkimuksen keskeinen tulos on uusi solujen seurantamenetelmä, mikä käyttää CPN:ää solukandidaattien ehdottamiseen, esittää vaihtoehtoiset seurantahypoteesit verkkomallia hyödyntämällä, ja valitsee globaalisti optimaalisen aliverkon solujen kulkemille reitille. Verrattuna useisiin muihin julkisesti saatavilla oleviin kuva-analyysiohjelmistoihin tässä väitöskirjassa kehitetyt menetelmät olivat suorituskyvyltään parhaita vaihekontrasti- ja fluoresenssimikroskopialla tuotettujen kuva-aineistojen analyyseissa, joissa solujen ulkomuoto oli hyvin vaihteleva.
4

Quantifying impaired metabolism following acute ischaemic stroke using chemical exchange saturation transfer magnetic resonance imaging

Msayib, Yunus January 2017 (has links)
In ischaemic stroke a disruption of cerebral blood flow leads to impaired metabolism and the formation of an ischaemic penumbra in which tissue at risk of infarction is sought for clinical intervention. In stroke trials, therapeutic intervention has largely been based on perfusion-weighted measures, but these have not been shown to be good predictors of tissue outcome. The aim of this thesis was to develop analysis techniques for magnetic resonance imaging (MRI) of chemical exchange saturation transfer (CEST) in order to quantify metabolic signals associated with tissue fate in patients with acute ischaemic stroke. This included addressing robustness for clinical application, and developing quantitative tools that allow exploration of the in-vivo complexity. Tissue-level analyses were performed on a dataset of 12 patients who had been admitted to the John Radcliffe Hospital in Oxford with acute ischaemic stroke and recruited into a clinical imaging study. Further characterisation of signals was performed on stroke models and tissue phantoms. A comparative study of CEST analysis techniques established a model-based approach, Bloch-McConnell model analysis, as the most robust for measuring pH-weighted signals in a clinical setting. Repeatability was improved by isolating non-CEST effects which attenuate signals of interest. The Bloch-McConnell model was developed further to explore whether more biologically-precise quantification of CEST effects was both possible and necessary. The additional model complexity, whilst more reflective of tissue biology, diminished contrast that distinguishes tissue fate, implying the biology is more complex than pH alone. The same model complexity could be used reveal signal patterns associated with tissue outcome that were otherwise obscured by competing CEST processes when observed through simpler models. Improved quantification techniques were demonstrated which were sufficiently robust to be used on clinical data, but also provided insight into the different biological processes at work in ischaemic tissue in the early stages of the disease. The complex array of competing processes in pathological tissue has underscored a need for analysis tools adequate for investigating these effects in the context of human imaging. The trends herein identified at the tissue level support the use of quantitative CEST MRI analysis as a clinical metabolic imaging tool in the investigation of ischaemic stroke.
5

Computational analysis of wide-angle light scattering from single cells

Pilarski, Patrick Michael 11 1900 (has links)
The analysis of wide-angle cellular light scattering patterns is a challenging problem. Small changes to the organization, orientation, shape, and optical properties of scatterers and scattering populations can significantly alter their complex two-dimensional scattering signatures. Because of this, it is difficult to find methods that can identify medically relevant cellular properties while remaining robust to experimental noise and sample-to-sample differences. It is an important problem. Recent work has shown that changes to the internal structure of cells---specifically, the distribution and aggregation of organelles---can indicate the progression of a number of common disorders, ranging from cancer to neurodegenerative disease, and can also predict a patient's response to treatments like chemotherapy. However, there is no direct analytical solution to the inverse wide-angle cellular light scattering problem, and available simulation and interpretation methods either rely on restrictive cell models, or are too computationally demanding for routine use. This dissertation addresses these challenges from a computational vantage point. First, it explores the theoretical limits and optical basis for wide-angle scattering pattern analysis. The result is a rapid new simulation method to generate realistic organelle scattering patterns without the need for computationally challenging or restrictive routines. Pattern analysis, image segmentation, machine learning, and iterative pattern classification methods are then used to identify novel relationships between wide-angle scattering patterns and the distribution of organelles (in this case mitochondria) within a cell. Importantly, this work shows that by parameterizing a scattering image it is possible to extract vital information about cell structure while remaining robust to changes in organelle concentration, effective size, and random placement. The result is a powerful collection of methods to simulate and interpret experimental light scattering signatures. This gives new insight into the theoretical basis for wide-angle cellular light scattering, and facilitates advances in real-time patient care, cell structure prediction, and cell morphology research.
6

Computational analysis of wide-angle light scattering from single cells

Pilarski, Patrick Michael Unknown Date
No description available.

Page generated in 0.0994 seconds