Spelling suggestions: "subject:"biometric.""
441 |
In Silico Modelling of Complex Biological Processes with Applications to Allergic Asthma and CancerColangelo, Marc 04 1900 (has links)
<p>Regardless of their origin or pathology, many, if not all, diseases have long been regarded as complex. Yet, despite the progression in the understanding of complexity and the development of systems biology, the majority of biomedical research has been derived from qualitative principles. In comparison to the ethical, temporal and logistical limitations of human experimentation, <em>in vivo</em> animal models have served to provide a more advantageous means to elucidate the underlying disease mechanisms. However, given the additional limitations presented by such models, <em>in silico </em>models have emerged as an effective complement, and, in some cases, a replacement for <em>in vivo</em> experimentation. The <em>in silico </em>models presented in this thesis were developed using mathematical and computational methods to investigate the evolution of two complex, diverse diseases from a systems biology perspective: allergic asthma and cancer.</p> <p>We generated two novel <em>in silico</em> models of allergic asthma aimed at clarifying some dynamic aspects of allergic responses. Experimentally, we utilized an <em>in vivo</em> murine model of chronic exposure to the most pervasive aeroallergen worldwide, house dust mite (HDM), for up to 20 weeks, equivalent to at least 20 human years. Using a range of HDM concentrations, experimental data were collected to study local and systemic effects. The first model applied empirical mathematical techniques to establish equations for airway inflammation and HDM-specific immunoglobulins using an iterative approach of experimentation and validation. Using the equations generated, we showed that the model was able to accurately predict and simulate data. The model also demonstrated the non-linear relationship between HDM exposure and both airway inflammation and allergic sensitization and identified system thresholds.</p> <p>The second model used mechanistic mathematical techniques to investigate the trafficking of eosinophils as they migrated from bone marrow to the blood and, ultimately, to the lungs. Making use of a limited data set, the model determined the effect of individual processes on the system. We identified eosinophil production, survival and death as having the greatest impacts, while migration played a relatively minor role. Furthermore, the model was used to simulate knockout models and the use of antibodies <em>in silico</em>.</p> <p>In the context of cancer growth and metastasis, we developed a theoretical model demonstrating the spatio-temporal development of a tumour in two-dimensions. The model was encoded to create a computer graphic simulation program, which simulated the effects of various parameters on the size and shape of a tumour. Through simulations, we demonstrated the importance of the diffusion process in cancer growth and metastasis.</p> <p>Ultimately, we believe the greatest benefit of each <em>in silico</em> model is the ability to provide an understanding of each respective disease recognized as dynamic and formally complex, but predominantly studied in reductionist, static or un-integrated approaches.</p> / Doctor of Philosophy (Medical Science)
|
442 |
Exploring the sensitivity of Biometric Data: A Comparative Analysis of Theoretical and Human PerspectivesJose, Dayona January 2024 (has links)
Biometric technology, leveraging distinctive physiological or behavioral traits for identification, has transformed authentication methods. This thesis explores biometric data sensitivity from theoretical and human perspectives. Theoretical analysis examines factors like uniqueness, permanence, and potential misuse, while empirical research surveys societal attitudes towards biometric sensitivity. Discrepancies between theoretical constructs and real-world perceptions underscore the complexity of this issue. Privacy, security, and trust emerge as central concerns, emphasizing the need for comprehensive approaches in biometric technology development and policy-making. The discussion interprets survey findings, highlighting implications for stakeholders. Future research could explore cultural influences on biometric perceptions, conduct longitudinal studies, and investigate innovative solutions to privacy and security concerns. Collaboration between academia, industry, and policymakers is crucial for advancing biometric technology ethically and responsibly in an increasingly digital world.
|
443 |
On the ethical implications of personal health monitoringMittelstadt, Brent January 2013 (has links)
Recent years have seen an influx of medical technologies capable of remotely monitoring the health and behaviours of individuals to detect, manage and prevent health problems. Known collectively as personal health monitoring (PHM), these systems are intended to supplement medical care with health monitoring outside traditional care environments such as hospitals, ranging in complexity from mobile devices to complex networks of sensors measuring physiological parameters and behaviours. This research project assesses the potential ethical implications of PHM as an emerging medical technology, amenable to anticipatory action intended to prevent or mitigate problematic ethical issues in the future. PHM fundamentally changes how medical care can be delivered: patients can be monitored and consulted at a distance, eliminating opportunities for face-to-face actions and potentially undermining the importance of social, emotional and psychological aspects of medical care. The norms evident in this movement may clash with existing standards of 'good' medical practice from the perspective of patients, clinicians and institutions. By relating utilitarianism, virtue ethics and theories of surveillance to Habermas' concept of colonisation of the lifeworld, a conceptual framework is created which can explain how PHM may be allowed to change medicine as a practice in an ethically problematic way. The framework relates the inhibition of virtuous behaviour among practitioners of medicine, understood as a moral practice, to the movement in medicine towards remote monitoring. To assess the explanatory power of the conceptual framework and expand its borders, a qualitative interview empirical study with potential users of PHM in England is carried out. Recognising that the inherent uncertainty of the future undermines the validity of empirical research, a novel epistemological framework based in Habermas' discourse ethics is created to justify the empirical study. By developing Habermas' concept of translation into a procedure for assessing the credibility of uncertain normative claims about the future, a novel methodology for empirical ethical assessment of emerging technologies is created and tested. Various methods of analysis are employed, including review of academic discourses, empirical and theoretical analyses of the moral potential of PHM. Recommendations are made concerning ethical issues in the deployment and design of PHM systems, analysis and application of PHM data, and the shortcomings of existing research and protection mechanisms in responding to potential ethical implications of the technology.
|
444 |
Three Factor Authentication Using Java Ring and BiometricsChitiprolu, Jyothi 17 December 2004 (has links)
Computer security is a growing field in the IT industry. One of the important aspects of the computer security is authentication. Using passwords (something you know) is one of the most common ways of authentications. But passwords have proven to provide weak level of security as they can be easily compromised. Some other ways of authenticating a user are using physical tokens, (something you possess) and biometrics, (something you are). Using any one of these techniques to secure a system always has its own set of threats. One way to make sure a system is secure is to use multiple factors to authenticate. One of the ways to use multiple factors is to use all the three factors of authentication, something you possess, something you are and something you know. This thesis discusses about different ways of authentication and implements a system using three factor authentication. It takes many security aspects of the system into consideration while implementing it, to make it secure.
|
445 |
Ensemble baseado em métodos de Kernel para reconhecimento biométrico multimodal / Ensemble Based on Kernel Methods for Multimodal Biometric RecognitionCosta, Daniel Moura Martins da 31 March 2016 (has links)
Com o avanço da tecnologia, as estratégias tradicionais para identificação de pessoas se tornaram mais suscetíveis a falhas, de forma a superar essas dificuldades algumas abordagens vêm sendo propostas na literatura. Dentre estas abordagens destaca-se a Biometria. O campo da Biometria abarca uma grande variedade de tecnologias usadas para identificar e verificar a identidade de uma pessoa por meio da mensuração e análise de aspectos físicos e/ou comportamentais do ser humano. Em função disso, a biometria tem um amplo campo de aplicações em sistemas que exigem uma identificação segura de seus usuários. Os sistemas biométricos mais populares são baseados em reconhecimento facial ou de impressões digitais. Entretanto, existem outros sistemas biométricos que utilizam a íris, varredura de retina, voz, geometria da mão e termogramas faciais. Nos últimos anos, o reconhecimento biométrico obteve avanços na sua confiabilidade e precisão, com algumas modalidades biométricas oferecendo bom desempenho global. No entanto, mesmo os sistemas biométricos mais avançados ainda enfrentam problemas. Recentemente, esforços têm sido realizados visando empregar diversas modalidades biométricas de forma a tornar o processo de identificação menos vulnerável a ataques. Biometria multimodal é uma abordagem relativamente nova para representação de conhecimento biométrico que visa consolidar múltiplas modalidades biométricas. A multimodalidade é baseada no conceito de que informações obtidas a partir de diferentes modalidades se complementam. Consequentemente, uma combinação adequada dessas informações pode ser mais útil que o uso de informações obtidas a partir de qualquer uma das modalidades individualmente. As principais questões envolvidas na construção de um sistema biométrico unimodal dizem respeito à definição das técnicas de extração de característica e do classificador. Já no caso de um sistema biométrico multimodal, além destas questões, é necessário definir o nível de fusão e a estratégia de fusão a ser adotada. O objetivo desta dissertação é investigar o emprego de ensemble para fusão das modalidades biométricas, considerando diferentes estratégias de fusão, lançando-se mão de técnicas avançadas de processamento de imagens (tais como transformada Wavelet, Contourlet e Curvelet) e Aprendizado de Máquina. Em especial, dar-se-á ênfase ao estudo de diferentes tipos de máquinas de aprendizado baseadas em métodos de Kernel e sua organização em arranjos de ensemble, tendo em vista a identificação biométrica baseada em face e íris. Os resultados obtidos mostraram que a abordagem proposta é capaz de projetar um sistema biométrico multimodal com taxa de reconhecimento superior as obtidas pelo sistema biométrico unimodal. / With the advancement of technology, traditional strategies for identifying people become more susceptible to failure, in order to overcome these difficulties some approaches have been proposed in the literature. Among these approaches highlights the Biometrics. The field of Biometrics encompasses a wide variety of technologies used to identify and verify the person\'s identity through the measurement and analysis of physiological and behavioural aspects of the human body. As a result, biometrics has a wide field of applications in systems that require precise identification of their users. The most popular biometric systems are based on face recognition and fingerprint matching. Furthermore, there are other biometric systems that utilize iris and retinal scan, speech, face, and hand geometry. In recent years, biometrics authentication has seen improvements in reliability and accuracy, with some of the modalities offering good performance. However, even the best biometric modality is facing problems. Recently, big efforts have been undertaken aiming to employ multiple biometric modalities in order to make the authentication process less vulnerable to attacks. Multimodal biometrics is a relatively new approach to biometrics representation that consolidate multiple biometric modalities. Multimodality is based on the concept that the information obtained from different modalities complement each other. Consequently, an appropriate combination of such information can be more useful than using information from single modalities alone. The main issues involved in building a unimodal biometric System concern the definition of the feature extraction technique and type of classifier. In the case of a multimodal biometric System, in addition to these issues, it is necessary to define the level of fusion and fusion strategy to be adopted. The aim of this dissertation is to investigate the use of committee machines to fuse multiple biometric modalities, considering different fusion strategies, taking into account advanced methods in machine learning. In particular, it will give emphasis to the analyses of different types of machine learning methods based on Kernel and its organization into arrangements committee machines, aiming biometric authentication based on face, fingerprint and iris. The results showed that the proposed approach is capable of designing a multimodal biometric System with recognition rate than those obtained by the unimodal biometrics Systems.
|
446 |
Ensemble baseado em métodos de Kernel para reconhecimento biométrico multimodal / Ensemble Based on Kernel Methods for Multimodal Biometric RecognitionDaniel Moura Martins da Costa 31 March 2016 (has links)
Com o avanço da tecnologia, as estratégias tradicionais para identificação de pessoas se tornaram mais suscetíveis a falhas, de forma a superar essas dificuldades algumas abordagens vêm sendo propostas na literatura. Dentre estas abordagens destaca-se a Biometria. O campo da Biometria abarca uma grande variedade de tecnologias usadas para identificar e verificar a identidade de uma pessoa por meio da mensuração e análise de aspectos físicos e/ou comportamentais do ser humano. Em função disso, a biometria tem um amplo campo de aplicações em sistemas que exigem uma identificação segura de seus usuários. Os sistemas biométricos mais populares são baseados em reconhecimento facial ou de impressões digitais. Entretanto, existem outros sistemas biométricos que utilizam a íris, varredura de retina, voz, geometria da mão e termogramas faciais. Nos últimos anos, o reconhecimento biométrico obteve avanços na sua confiabilidade e precisão, com algumas modalidades biométricas oferecendo bom desempenho global. No entanto, mesmo os sistemas biométricos mais avançados ainda enfrentam problemas. Recentemente, esforços têm sido realizados visando empregar diversas modalidades biométricas de forma a tornar o processo de identificação menos vulnerável a ataques. Biometria multimodal é uma abordagem relativamente nova para representação de conhecimento biométrico que visa consolidar múltiplas modalidades biométricas. A multimodalidade é baseada no conceito de que informações obtidas a partir de diferentes modalidades se complementam. Consequentemente, uma combinação adequada dessas informações pode ser mais útil que o uso de informações obtidas a partir de qualquer uma das modalidades individualmente. As principais questões envolvidas na construção de um sistema biométrico unimodal dizem respeito à definição das técnicas de extração de característica e do classificador. Já no caso de um sistema biométrico multimodal, além destas questões, é necessário definir o nível de fusão e a estratégia de fusão a ser adotada. O objetivo desta dissertação é investigar o emprego de ensemble para fusão das modalidades biométricas, considerando diferentes estratégias de fusão, lançando-se mão de técnicas avançadas de processamento de imagens (tais como transformada Wavelet, Contourlet e Curvelet) e Aprendizado de Máquina. Em especial, dar-se-á ênfase ao estudo de diferentes tipos de máquinas de aprendizado baseadas em métodos de Kernel e sua organização em arranjos de ensemble, tendo em vista a identificação biométrica baseada em face e íris. Os resultados obtidos mostraram que a abordagem proposta é capaz de projetar um sistema biométrico multimodal com taxa de reconhecimento superior as obtidas pelo sistema biométrico unimodal. / With the advancement of technology, traditional strategies for identifying people become more susceptible to failure, in order to overcome these difficulties some approaches have been proposed in the literature. Among these approaches highlights the Biometrics. The field of Biometrics encompasses a wide variety of technologies used to identify and verify the person\'s identity through the measurement and analysis of physiological and behavioural aspects of the human body. As a result, biometrics has a wide field of applications in systems that require precise identification of their users. The most popular biometric systems are based on face recognition and fingerprint matching. Furthermore, there are other biometric systems that utilize iris and retinal scan, speech, face, and hand geometry. In recent years, biometrics authentication has seen improvements in reliability and accuracy, with some of the modalities offering good performance. However, even the best biometric modality is facing problems. Recently, big efforts have been undertaken aiming to employ multiple biometric modalities in order to make the authentication process less vulnerable to attacks. Multimodal biometrics is a relatively new approach to biometrics representation that consolidate multiple biometric modalities. Multimodality is based on the concept that the information obtained from different modalities complement each other. Consequently, an appropriate combination of such information can be more useful than using information from single modalities alone. The main issues involved in building a unimodal biometric System concern the definition of the feature extraction technique and type of classifier. In the case of a multimodal biometric System, in addition to these issues, it is necessary to define the level of fusion and fusion strategy to be adopted. The aim of this dissertation is to investigate the use of committee machines to fuse multiple biometric modalities, considering different fusion strategies, taking into account advanced methods in machine learning. In particular, it will give emphasis to the analyses of different types of machine learning methods based on Kernel and its organization into arrangements committee machines, aiming biometric authentication based on face, fingerprint and iris. The results showed that the proposed approach is capable of designing a multimodal biometric System with recognition rate than those obtained by the unimodal biometrics Systems.
|
447 |
Two- and Three-dimensional Face Recognition under Expression VariationMohammadzade, Narges Hoda 30 August 2012 (has links)
In this thesis, the expression variation problem in two-dimensional (2D) and three-dimensional (3D) face recognition is tackled. While discriminant analysis (DA) methods are effective solutions for recognizing expression-variant 2D face images, they are not directly applicable when only a single sample image per subject is available. This problem is addressed in this thesis by introducing expression subspaces which can be used for synthesizing new expression images from subjects with only one sample image. It is proposed that by augmenting a generic training set with the gallery and their synthesized new expression images, and then training DA methods using this new set, the face recognition performance can be significantly improved. An important advantage of the proposed method is its simplicity; the expression of an image is transformed simply by projecting it into another subspace. The above proposed solution can also be used in general pattern recognition applications.
The above method can also be used in 3D face recognition where expression variation is a more serious issue. However, DA methods cannot be readily applied to 3D faces because of the lack of a proper alignment method for 3D faces. To solve this issue, a method is proposed for sampling the points of the face that correspond to the same facial features across all faces, denoted as the closest-normal points (CNPs). It is shown that the performance of the linear discriminant analysis (LDA) method, applied to such an aligned representation of 3D faces, is significantly better than the performance of the state-of-the-art methods which, rely on one-by-one registration of the probe faces to every gallery face. Furthermore, as an important finding, it is shown that the surface normal vectors of the face provide a higher level of discriminatory information rather than the coordinates of the points.
In addition, the expression subspace approach is used for the recognition of 3D faces from single sample. By constructing expression subspaces from the surface normal vectors at the CNPs, the surface normal vectors of a 3D face with single sample can be synthesized under other expressions. As a result, by improving the estimation of the within-class scatter matrix using the synthesized samples, a significant improvement in the recognition performance is achieved.
|
448 |
Two- and Three-dimensional Face Recognition under Expression VariationMohammadzade, Narges Hoda 30 August 2012 (has links)
In this thesis, the expression variation problem in two-dimensional (2D) and three-dimensional (3D) face recognition is tackled. While discriminant analysis (DA) methods are effective solutions for recognizing expression-variant 2D face images, they are not directly applicable when only a single sample image per subject is available. This problem is addressed in this thesis by introducing expression subspaces which can be used for synthesizing new expression images from subjects with only one sample image. It is proposed that by augmenting a generic training set with the gallery and their synthesized new expression images, and then training DA methods using this new set, the face recognition performance can be significantly improved. An important advantage of the proposed method is its simplicity; the expression of an image is transformed simply by projecting it into another subspace. The above proposed solution can also be used in general pattern recognition applications.
The above method can also be used in 3D face recognition where expression variation is a more serious issue. However, DA methods cannot be readily applied to 3D faces because of the lack of a proper alignment method for 3D faces. To solve this issue, a method is proposed for sampling the points of the face that correspond to the same facial features across all faces, denoted as the closest-normal points (CNPs). It is shown that the performance of the linear discriminant analysis (LDA) method, applied to such an aligned representation of 3D faces, is significantly better than the performance of the state-of-the-art methods which, rely on one-by-one registration of the probe faces to every gallery face. Furthermore, as an important finding, it is shown that the surface normal vectors of the face provide a higher level of discriminatory information rather than the coordinates of the points.
In addition, the expression subspace approach is used for the recognition of 3D faces from single sample. By constructing expression subspaces from the surface normal vectors at the CNPs, the surface normal vectors of a 3D face with single sample can be synthesized under other expressions. As a result, by improving the estimation of the within-class scatter matrix using the synthesized samples, a significant improvement in the recognition performance is achieved.
|
449 |
Os impactos do uso de tecnologia da informação e da identificação e captura automática de dados nos processos operacionais do varejoRomano, Regiane Relva 09 December 2011 (has links)
Submitted by Regiane Relva Romano (regiane@vip-systems.com.br) on 2011-12-28T12:03:36Z
No. of bitstreams: 1
Tese Regiane Relva Romano - dezembro 2011-Versao Final.pdf: 4192254 bytes, checksum: 786a11620fac456f482835d77b815ce8 (MD5) / Rejected by Gisele Isaura Hannickel (gisele.hannickel@fgv.br), reason: Prezada Regiane,
Está pendente a capa e a ficha catalográfica. Favor retirar o logotipo das primeiras folhas.
Segue a sequencia:
1º capa
2º contra capa (que na sua postagem está como 1ª folha)
3º ficha catalográfica
4º folha de assinaturas
5º sequencia do trabalho.....
Em caso de dúvidas favor verificar no site da biblioteca / serviços / manuais / normalização de trabalhos academicos.
Att,
Secretaria de Registro on 2011-12-28T12:09:43Z (GMT) / Submitted by Regiane Relva Romano (regiane@vip-systems.com.br) on 2012-01-04T01:31:23Z
No. of bitstreams: 1
Tese Regiane Relva Romano - Versao Final Entregue.pdf: 4264628 bytes, checksum: 5cde922f780d99b751abbf306d16f982 (MD5) / Approved for entry into archive by Gisele Isaura Hannickel (gisele.hannickel@fgv.br) on 2012-01-04T11:12:52Z (GMT) No. of bitstreams: 1
Tese Regiane Relva Romano - Versao Final Entregue.pdf: 4264628 bytes, checksum: 5cde922f780d99b751abbf306d16f982 (MD5) / Made available in DSpace on 2012-01-04T11:16:03Z (GMT). No. of bitstreams: 1
Tese Regiane Relva Romano - Versao Final Entregue.pdf: 4264628 bytes, checksum: 5cde922f780d99b751abbf306d16f982 (MD5)
Previous issue date: 2011-12-09 / Este trabalho objetivou identificar as principais tecnologias disponíveis de TI (Tecnologia da Informação) e de AIDC (Identificação e Captura Automática de Dados) para a área de varejo de autosserviço, para preencher a lacuna existente na literatura, sobre os benefícios de se usar novas tecnologias no ponto de venda, com vistas a otimizar sua operação. Para tanto, foram estudados os principais processos operacionais de uma loja de varejo de autosserviço, com vistas a identificar como as Tecnologias da Informação (TI) e de Identificação e Captura Automática de Dados (AIDC), poderiam ajudar a melhorar os resultados operacionais e agregar valor ao negócio. Para analisar suas proposições (de que o uso de TI e de AIDC podem ajudar na: redução dos tempos dos processos de retaguarda; redução do número de operações no ponto de venda; prevenção de perdas; redução dos custos e dos tempos para a realização dos inventários; redução do número de funcionários nas lojas; redução do tempo de fila no caixa; redução de rupturas e no aumento da eficiência operacional da loja), foram pesquisados diversos estudos de casos mundiais de empresas do segmento de varejo, que implementaram as tecnologias de AIDC e TI, principalmente a de RFID, para saber quais foram os impactos do uso destas tecnologias em suas operações e, em seguida, foi desenvolvido um Estudo de Caso abrangente, por meio do qual se objetivou entender os benefícios empresariais reais do uso destas tecnologias para o varejo de autosserviço. Como resultado final, foi possível identificar as mudanças nos processos operacionais do varejo de autosserviço, bem como os benefícios gerados em termos de custo, produtividade, qualidade, flexibilidade e inovação. O trabalho também evidenciou os pontos críticos de sucesso para a implementação da TI e das AIDC no varejo, que são: a revisão dos processos operacionais; a correta definição do hardware; dos insumos; do software; das interferências do ambiente físico; da disponibilização dos dados/informações dos produtos; das pessoas/funcionários e dos parceiros de negócios/fornecedores. De maneira mais específica, este trabalho buscou contribuir para o enriquecimento do campo de estudos no segmento de varejo e para o uso da tecnologia da informação, no Brasil, já que o assunto sobre o uso e o impacto de novas tecnologias no ponto de vendas, ainda permanece pouco explorado academicamente. / This study sought to identify the main IT technologies available for the AIDC and retail self-service area, to fill the gap in the literature about the real advantages of using new technologies at the point of sale, in order to optimize its operation. In order to do this, we studied the main operational processes of a self-service retail store bearing in mind to identify how the technologies of Automatic Identification and Data Capture and IT could help to improve the operating results and add value to the business. To analyze these proposals we have surveyed several global case studies of retail companies, which implemented the AIDC and IT technologies to investigate what were the impacts of using these technologies in their operations and then designed a comprehensive and innovative Case Study, through which we sought to understand the real business benefits. As a final result, it was possible to identify the changes and the benefits in terms of cost, productivity, quality, flexibility and innovation. The work also highlighted the critical points of success for the implementation of AIDC and IT Retail, which are: the review of operating processes, the correct definition of the hardware; inputs; software; interferences of the physical environment, the availability of data / information of products, of people / employees and of business partners / suppliers. More specifically, this study sought to contribute to the enrichment of the field studies in the retail segment and for the use of information technology in Brazil, since the issue on the use and impact of new technologies at the point of sales, still remains unexplored academically.
|
450 |
Algorithm And Architecture Design for Real-time Face RecognitionMahale, Gopinath Vasanth January 2016 (has links) (PDF)
Face recognition is a field of biometrics that deals with identification of subjects based on features present in the images of their faces. The factors that make face recognition popular and favorite as compared to other biometric methods are easier operation and ability to identify subjects without their knowledge. With these features, face recognition has become an integral part of the present day security systems, targeting a smart and secure world.
There are various factors that de ne the performance of a face recognition system. The most important among them are recognition accuracy of algorithm used and time taken for recognition. Recognition accuracy of the face recognition algorithm gets affected by changes in pose, facial expression and illumination along with occlusions in the images. There have been a number of algorithms proposed to enable recognition under these ambient changes. However, it has been hard to and a single algorithm that can efficiently recognize faces in all the above mentioned conditions. Moreover, achieving real time performance for most of the complex face recognition algorithms on embedded platforms has been a challenge. Real-time performance is highly preferred in critical applications such as identification of crime suspects in public. As available software solutions for FR have significantly large latency in recognizing individuals, they are not suitable for such critical real-time applications. This thesis focuses on real-time aspect of FR, where acceleration of the algorithms is achieved by means of parallel hardware architectures.
The major contributions of this work are as follows. We target to design a face recognition system that can identify at most 30 faces in each frame of video at 15 frames per second, which amounts to 450 recognitions per second. In addition, we target to achieve good recognition accuracy along with scalability in terms of database size and input image resolutions. To design a system with these specifications, as a first step, we explore algorithms in literature and come up with a hybrid face recognition algorithm. This hybrid algorithm shows good recognition accuracy on face images with changes in illumination, pose and expressions, and also with occlusions. In addition the computations in the algorithm are modular in nature which are suitable for real-time realizations through parallel processing.
The face recognition system consists of a face detection module to detect faces in the input image, which is followed by a face recognition module to identify the detected faces. There are well established algorithms and architectures for face detection in literature which can perform detection at 15 frames per second on video frames. Detected faces of different sizes need to be scaled to the size specified by the face recognition module. To meet the real-time constraints, we propose a hardware architecture for real-time bi-cubic convolution interpolation with dynamic scaling factors. To recognize the resized faces in real-time, a scalable parallel pipelined architecture is designed for the hybrid algorithm which can perform 450 recognitions per second on a database containing grayscale images of at most 450 classes on Virtex 6 FPGA. To provide flexibility and programmability, we extend this design to REDEFINE, a multi-core massively parallel reconfigurable architecture. In this design, we come up with FR specific programmable cores termed Scalable Unit for Region Evaluation (SURE) capable of performing modular computations in the hybrid face recognition algorithm. We replicate SUREs in each tile of REDEFINE to construct a face recognition module termed REDEFINE for Face Recognition using SURE Homogeneous Cores (REFRESH).
There is a need to learn new unseen faces on-line in practical face recognition systems. Considering this, for real-time on-line learning of unseen face images, we design tiny processors termed VOP, Processor for Vector Operations. VOPs function as coprocessors to process elements under each tile of REDEFINE to accelerate micro vector operations appearing in the synaptic weight computations. We also explore deep neural networks which operate similar to the processing in human brain and capable of working on very large face databases. We explore the field of Random matrix theory to come up with a solution for synaptic weight initialization in deep neural networks for better classification . In addition, we perform design space exploration of hardware architecture for deep convolution networks and conclude with directions for future work.
|
Page generated in 0.0658 seconds