• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 12
  • 3
  • 2
  • Tagged with
  • 36
  • 19
  • 11
  • 11
  • 11
  • 11
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Extrazelluläre polymere Substanzen (EPS) in vertikal durchströmten Pflanzenkläranlagen

Maciel, Naylson Moreira. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2004--Berlin.
12

Desintegration und anaerobe Verwertung bioabbaubarer Biokunststoffe

Grundmann, Veit 04 January 2016 (has links) (PDF)
Das Ziel dieser Arbeit ist es biobasierte, bioabbaubare Biokunststoffe mit einfacher Prozesstechnik zu desintegrieren und für anaerobe Mikroorganismen verfügbar zu machen. Mittels der Ergebnisse der Untersuchungen soll nachgewiesen werden, dass eine anaerobe Verwertung der desintegrierten Biokunststoffe bzw. der generierten Flüssigkeiten möglich ist. Außerdem soll ermittelt werden, welches energetische Potenzial dabei freigesetzt wird. Im Rahmen einer Wirtschaftlichkeitsbetrachtung wird die Implementierung einer Desintegrationsstufe in einer Vergärungsanlage bewertet. Zu Beginn der Untersuchungen wird festgestellt, dass eine anaerobe Verwertung im mesophilen und im thermophilen Bereich nur unzureichend realisierbar ist. In den anschließenden Untersuchungen werden Maßnahmen zur Beschleunigung der Desintegration von zertifizierten bioabbaubaren Biokunststoffen untersucht. Nachdem ein Nachweis der Desintegration verschiedener Biokunststoffe erbracht und aus-reichend hohe Gehalte gelöster Organik nachgewiesen werden, erfolgt im Anschluss die anaerobe Verwertung der erzeugten Flüssigkeiten in einer mesophilen, kontinuierlichen Vergärung. Die Gärtests geben Aufschluss über die Vergärbarkeit, das Biogaspotenzial, die Biogasqualität und die Abbaugrade der desintegrierten Biokunststoffe. Der höchste Abbaugrad (71,3 %) wird bei der Untersuchung der Flüssigkeiten der Ecovio®-Biobeutel erreicht. Der Abbau der Activia®-Becher (39,6 %) verlief weniger effizient und wird durch hohe Gehalte organischer Säuren und Verdünnungseffekte beeinflusst. Die real erzeugten Biogaspotenziale schwanken zwischen 0,1 lN CH4/g CSB und 0,23 lN CH4/g CSB. Die Biogasqualität während der Versuche ist sehr gut. Die Verhältnisse von CH4 zu CO2 liegen überwiegend zwischen 50:50 und 60:40. Der Nachweis der energetischen Nutzbarmachung der desintegrierten Biokunststoffe für den mikrobiellen Umsatz bzw. zur Biogasbildung wird erbracht. Die Implementierung einer Desintegrationsstufe in eine bestehende Vergärungsanlage wird im Hinblick auf die Wirtschaftlichkeit bewertet. Die Implementierung ist technisch realisierbar. Die Kosten der Implementierung übersteigen die Erlöse um ein Vielfaches. Auch bei längeren Betrachtungszeiträumen kann kein Gewinn erwirtschaftet werden.
13

Desintegration und anaerobe Verwertung bioabbaubarer Biokunststoffe

Grundmann, Veit 04 January 2016 (has links)
Das Ziel dieser Arbeit ist es biobasierte, bioabbaubare Biokunststoffe mit einfacher Prozesstechnik zu desintegrieren und für anaerobe Mikroorganismen verfügbar zu machen. Mittels der Ergebnisse der Untersuchungen soll nachgewiesen werden, dass eine anaerobe Verwertung der desintegrierten Biokunststoffe bzw. der generierten Flüssigkeiten möglich ist. Außerdem soll ermittelt werden, welches energetische Potenzial dabei freigesetzt wird. Im Rahmen einer Wirtschaftlichkeitsbetrachtung wird die Implementierung einer Desintegrationsstufe in einer Vergärungsanlage bewertet. Zu Beginn der Untersuchungen wird festgestellt, dass eine anaerobe Verwertung im mesophilen und im thermophilen Bereich nur unzureichend realisierbar ist. In den anschließenden Untersuchungen werden Maßnahmen zur Beschleunigung der Desintegration von zertifizierten bioabbaubaren Biokunststoffen untersucht. Nachdem ein Nachweis der Desintegration verschiedener Biokunststoffe erbracht und aus-reichend hohe Gehalte gelöster Organik nachgewiesen werden, erfolgt im Anschluss die anaerobe Verwertung der erzeugten Flüssigkeiten in einer mesophilen, kontinuierlichen Vergärung. Die Gärtests geben Aufschluss über die Vergärbarkeit, das Biogaspotenzial, die Biogasqualität und die Abbaugrade der desintegrierten Biokunststoffe. Der höchste Abbaugrad (71,3 %) wird bei der Untersuchung der Flüssigkeiten der Ecovio®-Biobeutel erreicht. Der Abbau der Activia®-Becher (39,6 %) verlief weniger effizient und wird durch hohe Gehalte organischer Säuren und Verdünnungseffekte beeinflusst. Die real erzeugten Biogaspotenziale schwanken zwischen 0,1 lN CH4/g CSB und 0,23 lN CH4/g CSB. Die Biogasqualität während der Versuche ist sehr gut. Die Verhältnisse von CH4 zu CO2 liegen überwiegend zwischen 50:50 und 60:40. Der Nachweis der energetischen Nutzbarmachung der desintegrierten Biokunststoffe für den mikrobiellen Umsatz bzw. zur Biogasbildung wird erbracht. Die Implementierung einer Desintegrationsstufe in eine bestehende Vergärungsanlage wird im Hinblick auf die Wirtschaftlichkeit bewertet. Die Implementierung ist technisch realisierbar. Die Kosten der Implementierung übersteigen die Erlöse um ein Vielfaches. Auch bei längeren Betrachtungszeiträumen kann kein Gewinn erwirtschaftet werden.
14

Sterilisation implantierbarer (Bio-)Polymere mit Ozon in hoch komprimierten Fluiden - umweltverträgliche Inaktivierung von Biokontaminanten

Cinquemani, Claudio January 2009 (has links)
Zugl.: Duisburg, Essen, Univ., Diss., 2009
15

Theorie zu kraftmikroskopischen Einzelmolekülexperimenten an Biopolymeren

Braun, Oliver, January 2004 (has links)
Stuttgart, Univ., Diss., 2004.
16

Isolierung und Charakterisierung von bakteriellen extrazellulären polymeren Substanzen aus Biofilmen

Rode, Alexander. Unknown Date (has links) (PDF)
Essen, Universiẗat, Diss., 2004--Duisburg.
17

Semiflexible Polymer Networks

Glaser, Jens 19 July 2011 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit der theoretischen Beschreibung der komplexen physikalischen Eigenschaften von Netzwerken semiflexibler Polymere. Ausgehend vom mathematischen Modell eines semiflexiblen Polymers, der \"wurmartigen Kette\" (wormlike chain), werden zwei wesentlich neue Konzepte zur Beschreibung dieses ungeordneten Materialzustands eingeführt. Einerseits wird das experimentell beobachtete, glasähnliche Fließen solcher Materialien durch das phänomenologische Modell eines semiflexiblen Polymers mit verallgemeinerter Reibung beschrieben, welche den Gesamteffekt der physikalischen oder auch chemischen Wechselwirkungen der Polymere untereinander widerspiegelt. Andererseits wird das bestehende Konzept der durch seine Nachbarfilamente erzeugten röhrenförmigen Einsperrung eines Filaments erweitert und die experimentell nachgewiesene, räumlich veränderliche Struktur der Röhre erklärt. Die erzielten Ergebnisse werden durch Rechnersimulationen sowie durch experimentelle Daten gestützt.
18

Ein Doppelschneckenextruder zur Materialdosierung in einem Rapid Prototyping-Prozess

Flath, Tobias, Schulze, Fritz Peter, Neunzehn, Jörg, Wiesmann, Hans-Peter, Hacker, Michael C., Schulz-Siegmund, Michaela 10 December 2016 (has links) (PDF)
Aus der Einleitung: "Im Tissue Engineering und in der Medizintechnik gewinnt das Rapid Prototyping (RP), das zu den additiven Fertigungsverfahren zählt, zunehmend an Bedeutung (Zhang, et al. 2015) (Li, et al. 2014). Für die Verarbeitung von thermoplastischen Biopolymeren ist das Fused Deposition Modeling (FDM, schematische Darstellung in Abbildung 1) von zentralem Stellenwert. ..."
19

The Reaction Mechanism of Cellular U snRNP Assembly / Der Reaktionsmechanismus zellulärer U snRNP Zusammenlagerung

Chari, Ashwin January 2009 (has links) (PDF)
Macromolecular complexes, also termed molecular machines, facilitate a large spectrum of biological reactions and tasks crucial to the survival of cells. These complexes are composed of either protein only, or proteins bound to nucleic acids (DNA or RNA). Prominent examples for each class are the proteosome, the nucleosome and the ribosome. How such units are assembled within the context of a living cell is a central question in molecular biology. Earlier studies had indicated that even very large complexes such as ribosomes could be reconstituted from purified constituents in vitro. The structural information required for the formation of macromolecular complexes, hence, lies within the subunits itself and, thus, allow for self- assembly. However, increasing evidence suggests that in vivo many macromolecular complexes do not form spontaneously but require assisting factors (“assembly chaperones”) for their maturation. In this thesis the assembly of RNA-protein (RNP) complexes has been studied by a combination of biochemical and structural approaches. A resourceful model system to study this process is the biogenesis pathway of the uridine-rich small nuclear ribonucleoproteins (U snRNPs) of the spliceosome. This molecular machine catalyzes pre-mRNA splicing, i.e. the removal of non-coding introns and the joining of coding exons to functional mRNA. The composition and architecture of U snRNPs is well defined, also, the nucleo-cytoplasmic transport events enabling the formation of these particles in vivo have been analyzed in some detail. Furthermore, recent studies suggest that the formation of U snRNPs in vivo is mediated by an elaborate assembly machinery consisting of protein arginine methyltransferase (PRMT5)- and survival motor neuron (SMN)-complexes. The elucidation of the reaction mechanism of cellular U snRNP assembly would serve as a paradigm for our understanding of how RNA-protein complexes are formed in the cellular environment. The following key findings were obtained as part of this study: 1) Efforts were made to establish a full inventory of the subunits of the SMN-complex. This was achieved by the biochemical definition and characterization of an atypical component of this complex, the unrip protein. This protein is associated with the SMN-complex exclusively in the cytoplasm and influences its subcellular localization. 2) With a full inventory of the components in hand, the architecture of the SMN-complex was defined on the basis of an interaction map of all subunits. This study elucidated that the proteins SMN, Gemin7 and Gemin8 form a backbone, onto which the remaining subunits adhere in a modular manner. 3) The two studies mentioned above formed the basis to elucidate the reaction mechanism of cellular U snRNP assembly. Initially, an early phase in the SMN-assisted formation of U snRNPs was analyzed. Two subunits of the U7 snRNP (LSm10 and 11) were found to interact with the PRMT5-complex, without being methylated. This report suggests that the stimulatory role of the PRMT5-complex is independent of its methylation activity. 4) Key reaction intermediates in U snRNP assembly were found and characterized by a combination of biochemistry and structural studies. Initially, a precursor to U snRNPs with a sedimentation coefficient of 6S is formed by the pICln subunit of the PRMT5-complex and Sm proteins. This intermediate was shown to constitute a kinetic trap in the U snRNP assembly reaction. Progression towards the assembled U snRNP depends on the activity of the SMN-complex, which acts as a catalyst. The formation of U snRNPs is shown to be structurally similar to the way clamps are deposited onto DNA to tether poorly processive polymerases. 5) The human SMN-complex is composed of several subunits. However, it is unknown whether all subunits of this entity are essential for U snRNP assembly. A combination of bioinformatics and biochemistry was applied to tackle this question. By mining databases containing whole-genome assemblies, the SMN-Gemin2 heterodimer is recognized as the most ancestral form of the SMN-complex. Biochemical purification of the Drosophila melanogaster SMN-complex reveals that this complex is composed of the same two subunits. Furthermore, evidence is provided that the SMN-Gemin2 heterodimer is necessary and sufficient to promote faithful U snRNP assembly. Future studies will adress further details in the reaction mechanism of cellular U snRNP assembly. The results obtained in this thesis suggest that the SMN and Gemin2 subunits are sufficient to promote U snRNP formation. What then is the function of the remaining subunits of the SMN-complex? The reconstitution schemes established in this thesis will be instrumental to address this question. Furthermore, additional mechanistic insights into the U snRNP assembly reaction will require the elucidation of structures of the assembly machinery trapped at various states. The prerequisite for these structural studies, the capability to generate homogenous complexes in sufficient amounts, has been accomplished in this thesis. / Makromolekulare Komplexe, auch molekulare Maschinen genannt, ermöglichen eine grosse Vielfalt biologischer Reaktionen und Aufgaben, die für das Überleben von Organismen kritisch sind. Diese Komplexe bestehen entweder nur aus Protein, oder setzen sich aus Protein und Nukleinsäure (DNA oder RNA) zusammen. Prominente Beispiele für diese Klassen molekularer Maschinen sind das Proteosom, das Nukleosom oder das Ribosom. Wie sich solche Einheiten innerhalb einer Zelle zusammenlagern ist eine grundlegende Frage der Molekularbiologie. Frühere Studien hatten angeduetet, dass es möglich ist sogar sehr grosse Komplexe wie das Ribosom in vitro aus gereinigten Bestandteilen zu einem aktiven Partikel zu rekonstruieren. Die Strukturinformation, die für die Bildung von makromolekularen Komplexen erforderlich ist, liegt also in den Untereinheiten selbst. Im Gegensatz dazu mehren sich heute die Hinweise dafür, dass sich viele makromolekulare Komplexe nicht spontan zusammenlagern, sondern die Aktivität assistierender Faktoren („Assembly Chaperone“) für ihre Reifung benötigen. In dieser Arbeit wurde der Zusammenbau von RNA-Protein (RNP) Partikeln durch eine Kombination aus Biochemie und Strukturbiologie untersucht. Ein ergiebiges System, um diesen Prozess zu studieren, ist die Biogenese der RNPs (U snRNPs) des Spleissosoms. Aufgabe dieser molekularen Maschine ist das Herausschneiden nicht-kodierender Introns und das Zusammenfügen kodiereneder Exons um so funktionelle mRNA zu bilden. Die Zusammensetzung und Architektur von U snRNPs sind gut definiert. Auch ist der Kern- Zytoplasma Transport, der für die Reifung dieser Partikel notwendig sind, detailliert beschrieben worden. Außerdem weisen neueste Studien darauf hin, dass die Bildung von U snRNPs in vivo durch eine komplexe Maschinerie, die aus den Protein-Arginin- Methyltransferase 5 (PRMT5)- und Survival-Motor-Neuron (SMN)- Komplexen besteht, vermittelt wird. Die Entschlüsselung des Reaktionsmechanismus des zellulärem U snRNP Zusammenbaus würde als Musterbeispiel für unser Verständnis dienen, wie RNPs in einer Zelle gebildet werden. Folgende Erkenntnisse wurden in dieser Arbeit gewonnen: 1) Es wurde zunächst versucht eine komplette Bestandsliste der Untereinheiten des SMN-Komplexes zu erstellen. Dies wurde durch die biochemische Definition und Charakterisierung einer atypischen Komponente dieses Komplexes, des Unrip Proteins, erreicht. Dieses Protein bindet ausschliesslich im Zytoplasma an den SMN-Komplex und beeinflusst dessen subzelluläre Lokalisation. 2) Die komplette Inventarisierung des SMN-Komplexes ermöglichte die Untersuchung der Wechselwirkung aller Untereinheiten und somit die Untersuchung seiner Architektur. Diese Studie zeigte, dass die Proteine SMN, Gemin7 und Gemin8 das Rückgrat des SMN-Komplexes bilden auf dem die restlichen Untereinheiten modular angeordnet werden. 3) Die zwei oben erwähnten Studien bildeten die Grundlage, den Reaktionsmechanismus zellulärer U snRNP Zusammenlagerung zu entschlüsseln. Zunächst wurde eine frühe Phase im SMN-vermittelten U snRNP Zusammenbau analysiert. Es konnte gezeigt werden, dass zwei Untereinheiten des U7 snRNP (LSm10 und 11) mit dem PRMT5-Komplex wechselwirken, ohne methyliert zu werden. Dies deutet darauf hin, dass die unterstützende Rolle des PRMT5-Komplexes von seiner Methylierungsaktivität unabhängig ist. 4) Schlüsselintermediate im Zusammenschluss von U snRNPs wurden identifiziert und durch eine Kombination von Biochemie und Strukturbiologie charakterisiert. In einer ersten Stufe bildet sich ein Vorgänger von U snRNPs mit einem Sedimentationskoeffizienten von 6S aus. Dieses Intermediat, bestehend aus pICln (einer Untereinheit des PRMT5-Komplexes) und Sm Proteinen, stellt eine kinetische Falle in der U snRNP Zusammenlagerung dar. Das Voranschreiten zum maturen U snRNP hängt von der Aktivität des SMN-Komplexes ab, der als Katalysator wirkt. Weiterhin konnte gezeigt werden, dass die Ausbildung von U snRNPs strukturell ähnlich zu der Reaktion verläuft, die Polymerasen mit geringer Prozessivität an der DNA verankert und die als „clamp-loading“ bezeichnet wird. 5) Der menschliche SMN-Komplex setzt sich aus mehreren Untereinheiten zusammen. Es ist jedoch unbekannt, ob alle Teile des Komplexes für die Zusammenlagerung von U snRNPs notwendig sind. Diese Frage wurde durch eine Kombination aus Bioinformatik und Biochemie adressiert. Durch Datenbanksuchen in komplett sequenzierten Genomen wurde festgestellt, dass die evolutionär ursprüngliche Form des SMN-Komplexes aus den zwei Proteinen SMN und Gemin2 besteht. Die biochemische Reinigung des Komplexes der Taufliege Drosophila melanogaster offenbarte, dass er auch in diesem Organismus aus denselben zwei Untereinheiten zusammengebaut ist. Außerdem wurde der Beweis erbracht, dass das SMN-Gemin2 heterodimer notwendig und hinreichend ist, um U snRNPs akkurat zusammenzulagern. Zukünftige Studien werden weitere detaillierte Ansichten des Reaktionsmechanismus in der zellulären Zusammenlagerung von U snRNPs liefern. Die Ergebnisse, die in der vorliegenden Arbeit erhalten wurden, deuten darauf hin, dass die Untereinheiten SMN und Gemin2 des SMN-Komplexes für den Zusammenbau von U snRNPs hinreichend sind. Was also ist die Funktion der weiteren Untereinheiten des SMN-Komplexes? Die Rekonstitutionsschemata, die in dieser Arbeit etabliert wurden, werden essentiell für die Beantwortung dieser Frage sein. Darüberhinaus werden weitere mechanistische Einsichten in die Zusammenlagerung von U snRNPs von der Ermittlung von Strukturen der Assembly-Maschinerie in verschiedenen Zuständen abhängen. Die Voraussetzung für diese strukturbiologische Untersuchungen, die Möglichkeit ausreichende Mengen homogener Komplexe herzustellen, ist ebenfalls in dieser Arbeit geschaffen worden.
20

Synthese von Zuckeraminosäure-,Peptid- und PNA-, DNA-Hybriden zur NMR-spektroskopischen Strukturuntersuchung

Mang, Christian P. January 2000 (has links) (PDF)
München, Techn. Univ., Diss., 2000.

Page generated in 0.0567 seconds