• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 12
  • 3
  • 2
  • Tagged with
  • 36
  • 19
  • 11
  • 11
  • 11
  • 11
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Semiflexible Polymer Networks

Glaser, Jens 18 May 2011 (has links)
Die vorliegende Arbeit beschäftigt sich mit der theoretischen Beschreibung der komplexen physikalischen Eigenschaften von Netzwerken semiflexibler Polymere. Ausgehend vom mathematischen Modell eines semiflexiblen Polymers, der \"wurmartigen Kette\" (wormlike chain), werden zwei wesentlich neue Konzepte zur Beschreibung dieses ungeordneten Materialzustands eingeführt. Einerseits wird das experimentell beobachtete, glasähnliche Fließen solcher Materialien durch das phänomenologische Modell eines semiflexiblen Polymers mit verallgemeinerter Reibung beschrieben, welche den Gesamteffekt der physikalischen oder auch chemischen Wechselwirkungen der Polymere untereinander widerspiegelt. Andererseits wird das bestehende Konzept der durch seine Nachbarfilamente erzeugten röhrenförmigen Einsperrung eines Filaments erweitert und die experimentell nachgewiesene, räumlich veränderliche Struktur der Röhre erklärt. Die erzielten Ergebnisse werden durch Rechnersimulationen sowie durch experimentelle Daten gestützt.
22

Mikro- und Nanokapseln aus Funktionspolymeren, Biopolymeren und Proteinen

Schüler, Corinna January 2000 (has links)
In dieser Arbeit wird die Beschichtung von kolloidalen Templaten mit Hilfe der Layer-by-layer Technik beschrieben. Mit ihr ist es möglich, die Oberfläche der Template mit sehr dünnen und gut definierten Filmen zu versehen. Durch Auflösung der Template werden Kapseln hergestellt, die je nach Zusammensetzung der Beschichtung unterschiedliche Eigenschaften aufweisen. / In this thesis the coating of colloid templates using the layer-by-layer technique is described. The surface of the templates is modified with thin, well defined films. After dissolving the templates, hollow capsules with different properties are obtained.
23

Emergent structure formation of the actin cytoskeleton / Emergente Strukturbildung des Aktin-Zytoskeletts

Huber, Florian 23 July 2012 (has links) (PDF)
Anders als menschengemachte Maschinen verfügen Zellen über keinen festgeschriebenen Bauplan und die Positionen einzelner Elemente sind häufig nicht genau festgelegt, da die Moleküle diffusiven Zufallsbewegungen unterworfen sind. Darüber hinaus sind einzelne Bauteile auch nicht auf eine einzelne Funktion festgelegt, sondern können parallel in verschiedene Prozesse einbezogen sein. Basierend auf Selbstorganisation und Selbstassemblierung muß die Organisation von Anordnung und Funktion einer lebenden Zelle also bereits in ihren einzelnen Komponenten inhärent enthalten sein. Die intrazelluläre Organisation wird zum großen Teil durch ein internes Biopolymergerüst reguliert, das Zytoskelett. Biopolymer-Netzwerke und –Fasern durchdringen die gesamte Zelle und sind verantworlich für mechanische Integrität und die funktionale Architektur. Unzählige essentielle biologische Prozesse hängen direkt von einem funktionierenden Zytoskelett ab. Die vorliegende Arbeit zielt auf ein besser Verständnis und den Nachbau zweier verschiedener funktionaler Module lebender Zellen anhand stark reduzierter Modellsysteme. Als zentrales Element wurde Aktin gewählt, da dieses Biopolymer eine herausragende Rolle in nahezu allen eukaryotischen Zellen spielt. Mit dem ersten Modellsystem wird der bewegliche Aktin-Polymerfilm an der Vorderkante migrierender Zellen betrachtet. Die wichtigsten Elemente dieser hochdynamischen Netzwerke sind bereits bekannt und wurden in dieser Arbeit benutzt um ein experimentelles Modellsystem zu etablieren. Vor allem aber lieferten detailierte Computersimulationen und ein mathematisches Modell neue Erkenntnisse über grundlegende Organisationsprinzipien dieser Aktinnetzwerke. Damit war es nicht nur möglich, experimentelle Daten erfolgreich zu reproduzieren, sondern das Entstehen von Substrukturen und deren Charakteristika auf proteinunabhängige, generelle Mechanismen zurückzuführen. Das zweite studierte System betrachtet die Selbstassemblierung von Aktinnetzwerken durch entropische Kräfte. Aktinfilamente aggregieren hierbei durch Kondensation multivalenter Ionen oder durch Volumenausschluss hochkonzentrierter inerter Polymere. Ein neu entwickelter Experimentalaufbau bietet die Möglichkeit in gut definierten zellähnlichen Volumina, Konvektionseinflüsse zu umgehen und Aggregationseffekte gezielt einzuschalten. Hierbei wurden neuartige, regelmäßige Netzwerkstrukturen entdeckt, die bislang nur im Zusammenhang mit molekularen Motoren bekannt waren. Es konnte ferner gezeigt werden, dass die Physik der Flüssigkristalle entscheidend zu weiteren Variationen dieser Netzwerke beiträgt. Dabei wird ersichtlich, dass entstehende Netzwerke in ihrer Architektur direkt die zuvor herrschenden Anisotropien der Filamentlösung widerspiegeln.
24

Aligned Fibrillar Collagen Matrices for Tissue Engineering / Ausgerichtete Kollagenfibrillenmatrices für das Tissue Engineering

Lanfer, Babette 18 May 2010 (has links) (PDF)
The desire for repair of tissue defects and injury is the major need prompting research into tissue engineering. Engineering of anisotropic tissues requires production of ordered substrates that orient cells preferentially and support cell viability and differentiation. Towards this goal, this thesis investigated methodologies to align extracellular matrix structures in vitro to guide stem/progenitor cell behaviour for tissue regeneration. Aligned collagen fibrils were deposited on planar substrates from collagen solutions streaming through a microfluidic channel system. Collagen solution concentration, degree of gelation, shear rate and pre-coating of the substrate were demonstrated to determine the orientation and density of the immobilized fibrils. The degree of collagen fibril orientation increased with increasing flow rates of the solution while the matrix density increased at higher collagen solution concentrations and on hydrophobic polymer pre-coatings. Additionally, the length of the immobilized collagen fibrils increased with increasing solution concentration and gelation time. Aligned collagen matrices were refined by incorporating the glycosaminoglycan heparin to study multiple extracellular matrix components in a single system. Multilineage (osteogenic/adipogenic/chondrogenic) differentiation of mesenchymal stem and progenitor cells was maintained by the aligned structures. Most noticeable was the observation that during osteogenesis, aligned collagen substrates choreographed ordered matrix mineralization. Likewise, myotube assembly of C2C12 cells was profoundly influenced by aligned topographic features resulting in enhanced myotube organization and length. Neurites from neural stem cells were highly oriented in the direction of the underlying fibrils. Neurite outgrowth was enhanced on aligned collagen compared to non-aligned collagen or poly-D-lysine substrates, while neural differentiation and cell survival were not influenced by the type of substrate. Using the new method to align collagen type I, the interior walls of cellulose hollow fiber membranes were coated with longitudinally aligned collagen fibrils to fabricate an advanced guidance conduit for nerve regeneration. First cell culture experiments showed that the tubes coated with aligned collagen supported viability and adherence of spinal cord-derived neurospheres. Together, these results demonstrate the feasibility of aligned collagen matrices as a versatile platform to control cell behaviour towards tissue regeneration. Ultimately, the new method to align collagen fibrils and to coat hollow membranes may become an integral component of tissue engineering, working synergistically with other emerging techniques to promote functional tissue replacements.
25

Ein Doppelschneckenextruder zur Materialdosierung in einem Rapid Prototyping-Prozess

Flath, Tobias, Schulze, Fritz Peter, Neunzehn, Jörg, Wiesmann, Hans-Peter, Hacker, Michael C., Schulz-Siegmund, Michaela January 2016 (has links)
Aus der Einleitung: "Im Tissue Engineering und in der Medizintechnik gewinnt das Rapid Prototyping (RP), das zu den additiven Fertigungsverfahren zählt, zunehmend an Bedeutung (Zhang, et al. 2015) (Li, et al. 2014). Für die Verarbeitung von thermoplastischen Biopolymeren ist das Fused Deposition Modeling (FDM, schematische Darstellung in Abbildung 1) von zentralem Stellenwert. ..."
26

Synthese von Cellulose- und Ligninestern als Matrixmaterialien für Biocomposite – Einfluss von Art und Anzahl der Substituenten auf die thermischen und mechanischen Eigenschaften der Matrix und des Verbundmaterials

Gohrbandt, Anne 27 November 2018 (has links)
Inhalt dieser Arbeit ist die Modifikation von biobasierten Matrixmaterialien, wie Cellulosederivaten mittels technisch skalierbarer Methoden, um das Potential modifizierten Matrixmaterialien für den Einsatz in grünen Compositen zu eruieren. Besonderes Augenmerk wurde auf die Faser-Matrixhaftung gelegt. Hier bietet die Modifikation des durchschnittlichen Substitutionsgrades (DS) von Celluloseestern großes Potential für eine bessere Faser- Matrixhaftung. So können sich bei verringertem DS zusätzliche Wasserstoffbrückenbindungen zu Naturfasern ausbilden, was zu einer besseren Haftung der beiden Phasen führen kann. Es wurden verschiedene Synthesewege genutzt um den DS gezielt zu variieren. Der Einfluss des DS verschiedener Cellulosederivate auf die thermischen Eigenschaften wurde mittels Dynamischer Differenzkalorimetrie (DSC) und Thermogravimetrischer Analyse (TGA) untersucht. Aussagen über strukturelle Veränderungen erfolgten über spektroskopische und chromatografische Methoden und über die Elementaranalyse. Ausgewählte Cellulosederivate wurden zu Prüfkörpern verarbeitet und Festigkeitsuntersuchungen durchgeführt. Aus den gewonnen Ergebnissen in Zusammenhang mit den Verarbeitungseigenschaften wurden geeignete Materialien ausgewählt, um die Faser-Matrixhaftung mit Naturfasern zu untersuchen.:1. Einleitung 1 2. Theoretische Grundlagen 3 2.1 Verbundwerkstoffe 3 2.1.1 Definition und Eigenschaften 3 2.1.2 Fasern 3 2.1.3 Matrix 6 2.1.4 Faser-Matrixhaftung 7 2.1.5 Bestimmung der Faser-Matrixhaftung 8 2.2 Biocomposite 9 2.2.1 Biopolymere 9 2.2.2 Biopolymere als Matrix 10 2.2.2.1 Biopolymere auf Basis von Cellulose 10 2.2.2.2 Biopolymere auf Basis von Lignin 14 2.2.3 Naturfasern 19 2.2.4 Beeinflussung der Faser-Matrixhaftung 20 2.2.4.1 Fasermodifikationen 20 2.2.4.2 Matrixmodifikationen 23 2.3 Einflussmöglichkeiten auf die Verarbeitung von Polymeren 25 2.3.1 Innere Weichmachung 26 2.3.2 Äußere Weichmachung und weitere Additive 29 2.4 Acylierungsreaktionen 30 2.4.1 Acylierungsreaktionen an Cellulose 30 2.4.2 Acylierungsreaktionen am Lignin 33 3. Materialien und Methoden 34 3.1 Chemikalien 34 3.2 Synthesen und Modifikation der Matrixmaterialen 35 3.2.1 Verseifung von CAB 35 3.2.2 Synthese von Ligninacetat 36 3.2.3 Synthese von Celluloseoctanoat 36 3.2.4 Acylierung der Octanoate 37 3.2.4.1 Synthese von Celluloseacetooctanoat 37 3.2.4.2 Synthese von Cellulosepropiooctanoat 37 3.3 Strukturelle Untersuchungen 38 3.3.1 GC-FID 38 3.3.1.1 DS-Ermittlung 38 3.3.1.2 Ermittlung des Acetylgehaltes von Ligninacetat 40 3.3.2 Bestimmung der gesamten Hydroxylgruppen des Ligninacetates 41 3.3.3 Elementaranalyse 41 3.3.4 13C Festkörper-NMR 42 3.3.5 Ramanspektroskopie 43 3.3.6 FT-IR-Spektroskopie 43 3.3.7 XRD 43 3.3.8 Löseversuche 44 3.3.9 Pyrolyse-GC-MS 44 3.4 Thermische Analysen 45 3.4.1 DSC 45 3.4.2 Thermogravimetrische Untersuchungen (TGA) 46 3.4.3 Schmelzversuche 47 3.5 Verarbeitung der Polymere 47 3.5.1 Mischen der Polymere 47 3.5.2 Beimischung der Fasern 47 3.5.3 Herstellung von Zugprüfkörpern 47 3.6 Untersuchung der Prüfkörper 48 3.6.1 Zugprüfung 48 3.6.2 Dynamisch-mechanische Analyse (DMA) 48 3.6.3 Rasterelektronenmikroskopie (REM) 48 4. Ergebnisse und Diskussion 49 4.1 Modifizierte konventionelle Celluloseester 49 4.1.1 Auswahl der Modifizierungsart und des Celluloseesters 49 4.1.2 Modifizierung 49 4.1.3 Charakterisierung 49 4.1.3.1 Einfluss der Verseifung auf die DS-Werte der Celluloseester 49 4.1.3.2 Einfluss des DS auf die Löslichkeit der verseiften Ester 54 4.1.3.3 Einfluss des DS auf die thermischen Eigenschaften 55 4.1.3.4 Einfluss der Verseifung auf die Kristallinität von CABs 58 4.2 Synthetisierte Celluloseester mit langkettigen Alkylresten 60 4.2.1 Auswahl der Syntheseart und der herzustellenden Celluloseester 60 4.2.2 Celluloseoctanoat 61 4.2.2.1 Einfluss der Reaktionszeit auf den DS und die molekulare Struktur von Celluloseoctanoat 61 4.2.2.2 Einfluss des DS auf die thermischen Eigenschaften von Celluloseoctanoaten65 4.2.3 Mischester auf der Basis von Celluloseoctanoat 69 4.2.3.1 Chemische Eigenschaften 69 4.2.3.2 Einfluss auf die thermischen Eigenschaften von Mischestern auf der Basis von Celluloseoctanoat 74 4.3 Synthese von Ligninacetat 87 4.3.1 Auswahl des Lignins und der Syntheseart 87 4.3.2 Modifizierung 87 4.3.2.1 Chemische Eigenschaften 87 4.3.2.2 Thermische Eigenschaften 90 4.4 Mischungen von Ligninacetat und CAB 91 4.4.1 Auswahl der Polymere 91 4.4.2 Charakterisierung 92 4.4.3 Polymerkompatibilität der Komponenten 93 4.5 Verwendung der Biopolymere im Spritzguss 94 4.5.1 Prüfkörper aus verseiftem CAB 95 4.5.1.1 Verarbeitungseigenschaften 95 4.5.1.2 Festigkeiten 95 4.5.2 Mischungen von CAB mit Ligninacetat 97 4.5.2.1 Verarbeitungseigenschaften 97 4.5.2.2 Festigkeiten 98 4.5.2.3 Einfluss des Mischungsverhältnisses auf die Glasübergangstemperatur 99 4.5.3 Äußere Weichmacher und weitere Additive 102 4.5.3.1 Verarbeitungseigenschaften von CAB mit TBC 102 4.5.3.2 Festigkeiten von CAB mit TBC 103 4.5.3.3 Thermische Eigenschaften von CAB mit TBC 107 4.5.3.4 Verarbeitungseigenschaften von CAB mit Harnstoff und Montmorillonit 109 4.5.3.5 Festigkeiten von CAB mit Harnstoff und Montmorillonit 110 4.5.3.6 Thermische Eigenschaften von CAB mit Harnstoff und Montmorillonit 113 4.5.3.7 Verarbeitungseigenschaften von CAB mit Stabaxol und Inositol 114 4.5.3.8 Festigkeiten von CAB mit Stabaxol und Inositol 115 4.5.3.9 Thermische Eigenschaften von CAB mit Stabaxol und Inositol 117 4.6 Verwendung der Biopolymere für Biocomposite 119 4.6.1 Verarbeitungseigenschaften 119 4.6.2 Festigkeiten 120 4.6.3 Bruchmorphologie 121 5. Zusammenfassung und Ausblick 123 6. Anhang 127
27

Material Properties and Aesthetic Qualities of Gels

Mayer, Kerstin 30 June 2022 (has links)
We live in a time of many challenges. The ‘Great Acceleration’ (Steffen et al., 2015) is a trend that can be observed in numerous fields in our world: be it the development of CO2 emissions, the land use or the enormous amount of produced plastics accompanied by massive environmental pollution. This ‘phenomenon’ is obviously directly linked to the way we live and how our society works. To meet these developments, we need to move away from the big, prone concepts that got us here in the first place, and instead build on a variety of dynamic and changing solutions.
28

Charged polymer-macroion complexes

Boroudjerdi, Hoda January 2005 (has links)
This work explores the equilibrium structure and thermodynamic phase behavior of complexes formed by charged polymer chains (polyelectrolytes) and oppositely charged spheres (macroions). Polyelectrolyte-macroion complexes form a common pattern in soft-matter physics, chemistry and biology, and enter in numerous technological applications as well. From a fundamental point of view, such complexes are interesting in that they combine the subtle interplay between electrostatic interactions and elastic as well as entropic effects due to conformational changes of the polymer chain, giving rise to a wide range of structural properties. This forms the central theme of theoretical studies presented in this thesis, which concentrate on a number of different problems involving strongly coupled complexes, i.e. complexes that are characterized by a large adsorption energy and small chain fluctuations. <br><br> In the first part, a global analysis of the structural phase behavior of a single polyelectrolyte-macroion complex is presented based on a dimensionless representation, yielding results that cover a wide range of realistic system parameters. Emphasize is made on the interplay between the effects due to the polyelectrolytes chain length, salt concentration and the macroion charge as well as the mechanical chain persistence length. The results are summarized into generic phase diagrams characterizing the wrapping-dewrapping behavior of a polyelectrolyte chain on a macroion. A fully wrapped chain state is typically obtained at intermediate salt concentrations and chain lengths, where the amount of polyelectrolyte charge adsorbed on the macroion typically exceeds the bare macroion charge leading thus to a highly overcharged complex. <br><br> Perhaps the most striking features occur when a single long polyelectrolyte chain is complexed with many oppositely charged spheres. In biology, such complexes form between DNA (which carries the cell's genetic information) and small oppositely charged histone proteins serving as an efficient mechanism for packing a huge amount of DNA into the micron-size cell nucleus in eucaryotic cells. The resultant complex fiber, known as the chromatin fiber, appears with a diameter of 30~nm under physiological conditions. Recent experiments indicate a zig-zag spatial arrangement for individual DNA-histone complexes (nucleosome core particles) along the chromatin fiber. A numerical method is introduced in this thesis based on a simple generic chain-sphere cell model that enables one to investigate the mechanism of fiber formation on a systematic level by incorporating electrostatic and elastic contributions. As will be shown, stable complex fibers exhibit an impressive variety of structures including zig-zag, solenoidal and beads-on-a-string patterns, depending on system parameters such as salt concentration, sphere charge as well as the chain contour length (per sphere). The present results predict fibers of compact zig-zag structure within the physiologically relevant regime with a diameter of about 30~nm, when DNA-histone parameters are adopted. <br><br> In the next part, a numerical method is developed in order to investigate the role of thermal fluctuations on the structure and thermodynamic phase behavior of polyelectrolyte-macroion complexes. This is based on a saddle-point approximation, which allows to describe the experimentally observed reaction (or complexation) equilibrium in a dilute solution of polyelectrolytes and macroions on a systematic level. This equilibrium is determined by the entropy loss a single polyelectrolyte chain suffers as it binds to an oppositely charged macroion. This latter quantity can be calculated from the spectrum of polyelectrolyte fluctuations around a macroion, which is determined by means of a normal-mode analysis. Thereby, a stability phase diagram is obtained, which exhibits qualitative agreement with experimental findings. <br><br> At elevated complex concentrations, one needs to account for the inter-complex interactions as well. It will be shown that at small separations, complexes undergo structural changes in such a way that positive patches from one complex match up with negative patches on the other. Furthermore, one of the polyelectrolyte chains may bridge between the two complexes. These mechanisms lead to a strong inter-complex attraction. As a result, the second virial coefficient associated with the inter-complex interaction becomes negative at intermediate salt concentrations in qualitative agreement with recent experiments on solutions of nucleosome core particles. / In dieser Arbeit werden Gleichgewichtsstrukturen und die thermodynamischen Phasen von Komplexen aus geladenen Polymeren (Polyelektrolyten) und entgegengesetzt geladenen Kugeln (Makroionen) untersucht. Polyelektrolyt-Makroion-Komplexe bilden ein grundlegendes und wiederkehrendes Prinzip in der Physik weicher Materie sowie in Chemie und Biologie. In zahlreichen technologischen Prozessen finden sich ebenfalls Anwendungsbeispiele für derartige Komplexe. Zusätzlich zu ihrem häufigen Auftreten sind sie aufgrund ihrer Vielfalt von strukturellen Eigenschaften von grundlegendem Interesse. Diese Vielfalt wird durch ein Zusammenspiel von elektrostatischen Wechselwirkungen sowie elastischen und entropischen Effekten aufgrund von Konformationsänderungen in der Polymerkette bedingt und bildet das zentrale Thema der theoretischen Studien, die mit dieser Arbeit vorgelegt werden. Verschiedene Strukturen und Prozesse, die stark gekoppelte Komplexe beinhalten - das sind solche, für die eine hohe Adsorptionsenergie und geringe Fluktuationen in den Polymerketten charakteristisch sind -, bilden das Hauptthema der Arbeit. <br><br> Basierend auf einer dimensionslosen Darstellung wird im ersten Teil der Arbeit in einer umfassenden Analyse das strukturelle Phasenverhalten einzelner Polyelektrolyt-Makroion-Komplexe behandelt. Der Schwerpunkt wird hier auf das Wechselspiel zwischen Effekten aufgrund der Polyelektrolytkettenlänge, ihrer mechanischen Persistenzlänge, der Salzkonzentration und der Ladung des Makroions gelegt. Die Ergebnisse werden in allgemeinen Phasendiagrammen zusammengestellt, das das Aufwickeln-Abwickeln-Verhalten der Polyelektrolytkette auf einem Makroion beschreibt. Ein Zustand mit komplett aufgewickelter Kette tritt typischerweise bei mittleren Salzkonzentrationen und Kettenlängen auf; häufig ist hier die auf dem Makroion adsorbierte Gesamtladung des Polyelektrolyts größ er als die Ladung des nackten Makroions, d.h. es findet in hohem Grad Ladungsinversion statt. <br><br> Äußerst bemerkenswerte Eigenschaften treten auf, wenn eine einzelne lange Polyelektrolytkette viele, ihr entgegengesetzt geladene Kugeln komplexiert. In biologischen Systemen findet man solche Komplexe zwischen DNS, die die genetische Information einer Zelle trägt, und kleinen, entgegengesetzt geladenen Histonproteinen. Diese Komplexe dienen als effizienter Mechanismus, die groß e Menge an DNS im Mikrometer-groß en Zellkern eukaryotischer Zellen zu komprimieren. Die dadurch erhaltene komplexe Faser, eine Chromatinfaser, hat unter physiologischen Bedingungen einen Durchmesser von nur etwa 30~nm. Neue Experimente haben gezeigt, dass eine räumliche Zickzack-Anordnung einzelner DNA-Histon-Komplexe entlang der Chromatinfaser vorliegt. In der hier vorgelegten Arbeit wird eine numerische Methode vorgestellt, die auf einem einfachen Ketten-Kugel-Zell-Modell basiert und die die systematische Untersuchung des Mechnismus zur Faserbildung ermöglicht, wobei sowohl elektrostatische als auch elastische Wechselwirkungen berücksichtigt werden. Es wird gezeigt, dass stabile Komplexfasern in Abhängigkeit von der Salzkonzentration, der Kugelladung und der Kettenkonturlänge eine Vielfalt von Strukturen aufweisen, darunter Zickzack-, Solenoid- und Perlenkettenformen. Für physiologisch relevante Bedingungen werden mit dieser Methode für DNA-Histon-Komplexe Fasern kompakter Zickzack-Struktur mit einem Durchmesser von etwa 30~nm erhalten. <br><br> Im folgenden Teil wird eine numerische Methode entwickelt, um den Einfluss thermischer Fluktuationen auf Struktur und thermodynamisches Phasenverhalten der Polyelektrolyt-Makroion-Komplexe zu untersuchen. Basierend auf der Sattelpunktsnäherung werden die experimentell beobachteten Reaktionsgleichgewichte in verdünnten Lösungen von Polyelektrolyten und Makroionen systematisch beschrieben. Das Gleichgewicht ist durch einen Verlust an Entropie für die einzelne Polyelektrolytkette durch die Bindung an das entgegengesetzt geladene Makroion gekennzeichnet. Diese Größ e wurde aus dem Spektrum der Polyelektrolytfluktuationen um das Makroion erhalten und mittels einer Analyse der Normalmoden berechnet. Hierüber wird ein Phasendiagramm zur Stabilität der Komplexe erhalten, das qualitativ gute Übereinstimmungen mit experimentellen Ergebnissen aufweist. <br><br> Bei höheren Komplexkonzentrationen müssen auch die Wechselwirkungen zwischen den Komplexen berücksichtigt werden. Es wird gezeigt, dass sich die Struktur der Komplexe bei kleinen Abständen so ändert, dass positiv geladene Bereiche eines Komplexes mit negativ geladenen auf einem Nachbarkomplex räumlich korrelieren. Weiterhin können einzelne Polyelektrolytketten als verbrückendes Element zwischen zwei Komplexen dienen. Dieser Mechanismus führt zu starker effektiver Anziehung zwischen den Komplexen. In Übereinstimmung mit kürzlich durchgeführten Experimenten ist als Folge davon der zweite Virialkoeffizient der Wechselwirkung zwischen Komplexen bei mittleren Salzkonzentrationen negativ.
29

Growth of Platinum Clusters in Solution and on Biopolymers: The Microscopic Mechanisms / Der Mikroskopische Mechanismus des Wachstums von Platin-Clustern in Lösung und auf Biopolymeren

Colombi Ciacchi, Lucio 16 June 2002 (has links) (PDF)
Thema der vorgelegten Dissertation ist der Mechanismus der Keimbildung und des Wachstums von Platinclustern in Lösung und auf Biopolymeren nach der Reduktion von Platin-Salzen. Die Untersuchung wird auf atomarer Skala durch ab-initio Molekulardynamik mit der Methode von Car und Parrinello durchgeführt. In einem klassischen, generell akzeptierten Mechanismus erfolgt die Aggregation von Pt-Atomen nur nach kompletter Reduktion der Pt(II)-Komplexen zum metallischen Pt(0)-Zustand. Im Gegensatz dazu, in der hier beobachteten Reaktionsablauf entstehen stabile Pt-Pt-Bindungen schon nach einem einzigen Reduktionsschritt. Darüber hinaus wird es gefunden, dass kleine Pt-Cluster durch Addition von unreduzierten PtCl2(H2O)2-Komplexen wachsen können. Das stimmt mit einem experimentell beocbachteten autokatalytischen Clusterwachstumsmechanismus überein. Es wird weiterhin gefunden, dass Pt(II)-Komplexe, die kovalent an DNA oder an Proteine gebunden sind, als sehr effiziente Nukleationszentren für das weitere Metallclusterwachstum wirken können. Das ist eine Konsequenz des starken Donor-Charakters der organischen Liganden, in derer Anwesenheit stärkere Metall-Metall-Bindungen als frei in der Lösung gebildet werden können. In der Tat, in Metallisierungsexperimenten können 5 Nanometer dünne, mehrere Mikrometer lange, regelmässige Clusterkette erzeugt werden, die rein heterogen auf das Biomolekulare Templat gewachsen sind. / In this thesis we investigate the molecular mechanisms of platinum cluster nucleation and growth in solution and on biopolymers by means of first-principles molecular dynamics. In contrast with a classical picture where clusters nucleate by aggregation of metallic Pt(0) atoms, we find that Pt--Pt bonds can form between dissolved Pt(II) complexes already after a single reduction step. Furthermore, we observe that small clusters grow by addition of unreduced PtCl2(H2O)2 complexes, consistently with an autocatalytic growth mechanism. Moreover Pt(II) ions covalently bound to biopolymers are found to act as preferred nucleation sites for the formation of clusters. This is a consequence of the strong donor character of the organic ligands which induce the formation of stronger metal-metal bonds than those obtained in solution. In fact, in metallization experiments we obtain a clean and purely heterogeneous metallization of single DNA molecules leading to thin and uniform Pt cluster chains extended over several microns.
30

Bioprinting of Functionalized Bone Grafts

von Strauwitz geb. Ahlfeld, Tilman 10 August 2021 (has links)
Hintergrund: Die Anzahl von Knochenfrakturen im Zusammenhang mit Traumata, sowie osteoporosebedingten Fragilitätsfrakturen oder auch Knochendefekten in Folge von Tumorresektionen steigt stetig an. Die Nutzung autologen, aber auch allogenen und xenogenen Spendermaterials ist limitiert. Eine vielversprechende Alternative sind Knochenkonstrukte, die über einen Tissue Engineering-Ansatz hergestellt werden. Dabei werden resorbierbare Biomaterialien mit biologisch aktiven Substanzen wie Wachstumsfaktoren oder Zellen kombiniert. Diese funktionalisierten Konstrukte regen nach einer Implantation in den Patienten die gesunde Knochensubstanz zur Heilung an und resorbieren idealerweise zugunsten des nachwachsenden, natürlichen Knochens. Eine neuartige Form des Tissue Engineerings ist der 3D-Biodruck („Bioprinting“), bei dem biologisch aktive Proteine und/oder Zellen mit Biomaterialien vermischt werden und anschließend durch ein additives Fertigungsverfahren zu Konstrukten verarbeitet werden. Dies hat einige Vorteile: Z.B. die Fertigung eines patientenspezifischen Konstrukts, welches direkt an den Defekt angepasst ist, aber auch eine gute Einstellbarkeit der Porosität des finalen Konstrukts, was vorteilhaft für die Nährstoffversorgung und Vaskularisierung sein kann. Vor allem erlaubt es eine ortsaufgelöste Verteilung, wodurch beispielsweise Zellen in einem Konstrukt so positioniert werden können, dass diese zu einem gewebeähnlichen Knochenkonstrukt reifen können. Fragestellung: Im letzten Jahrzehnt wurden einige technologische Fragestellungen im Bereich des Bioprintings gelöst. Für das Knochen-Tissue Engineering sind bisher allerdings nur wenige Ansätze präsentiert wurden. Dies liegt unter anderem daran, dass im Bioprinting vor allem Hydrogele verarbeitet werden. Diese sind allerdings sowohl chemisch, als auch mechanisch weit von natürlichem Knochengewebe entfernt und daher weniger als Knochenersatz geeignet. In dieser Arbeit wurde daher untersucht, ob (Bio-)printing eine für Knochen-Tissue Engineering-Strategien geeignete Methode ist. Dazu wurden zwei vielversprechende Ansätze verfolgt: (I) Mehrphasendruck von bioaktiven Calciumphosphatzementen in Kombination mit Zellen oder mit Wachstumsfaktoren funktionalisierten, biologisch aktiven Hydrogelen. (II) Entwicklung einer neuen Bioink, indem ein wachstumsfaktor- oder zellbeladenes Hydrogel mit einem bioaktiven Füllstoff geblendet wird. Die in der Doktorarbeit vorgestellten Studien sollen dabei insbesondere die Entwicklung dieser Ansätze darstellen, sowie deren Grenzen aufzeigen. Zusätzlich sollen grundlegende mechanische und biologische Eigenschaften der biogedruckten Knochenkonstrukte untersucht werden. Materialien und Methoden: Eine Technologie, die das Prinzip des Bioprintings ermöglicht, ist das sogenannte 3D-Plotten. Mit Hilfe eines Multikanal-Plotters können mehrphasige Konstrukte (Ansatz I), aber natürlich auch einphasige Konstrukte (Ansatz II) hergestellt werden. Für Ansatz I wurde ein klinisch zugelassener Calciumphosphatzement (CPC) als bioaktive Komponente verwendet. Für Ansatz II wurde ein bisher noch wenig erforschtes Nanomaterial namens Laponit verwendet, welches großes Potential für das Tissue Engineering besitzt. Die Biopoylmere Alginat und Methylcellulose bildeten die Grundlage für plottbare, wachstumsfaktor- und zellbeladene Pasten (Biomaterial-inks bzw. Bioinks). Zur Entwicklung einer spezifischen Bioink wurde humanes gefrorenes Frischplasma verwendet. Die rheologischen Eigenschaften neu entwickelter Biomaterial-inks und Bioinks, sowie die mechanischen Eigenschaften der geplotteten Hydrogele wurden charakterisiert. Weitere Untersuchungen schlossen die Quellung der Hydrogele und die Porosität der Konstrukte ein. Ein besonderes Augenmerk wurde auf die Formgenauigkeit der geplotteten Strukturen gelegt. Entsprechend der Untersuchungsansätze wurden verschiedene Zelltypen verwendet, insbesondere mesenchymale Stammzellen (MSC), die direkt mit der Paste verdruckt wurden. Als Modellwachstumsfaktor diente der angiogene vascular endothelial growth factor (VEGF). Dessen Freisetzung aus geplotteten Scaffolds wurde mittels ELISA überprüft; die biologische Aktivität wurde anhand des Wachstums von humanen Nabelschnurendothelzellen (HUVEC) untersucht. Ergebnisse: Zunächst wurde untersucht, ob Multikanal-Plotten geeignet ist, um CPC-Konstrukte patientenindividuell zu fertigen. Dies wurde mit Hilfe einer auflösbaren Methylcellulosepaste erreicht. Dieses Verfahren erlaubte die Herstellung von inneren Kavitäten, die mit anderen Herstellungsverfahren nicht möglich gewesen wären. Darüber hinaus konnte aus einem CT-Scan einer Hand ein Kahnbein extrahiert und virtuell modelliert werden, welches mit hoher Formgenauigkeit geplottet werden konnte. Es wurde gezeigt, dass dies auch auf biphasige Konstrukte aus CPC und einer Bioink anwendbar ist. Dies wurde durch die Entwicklung und Verarbeitung von Bioinks ermöglicht. Biogedruckte Zellen können in vitro und in vivo spezifische biologische Effekte bewirken. Dazu wurden innerhalb der Arbeit zwei Bioinks als plottbare Zellträgermaterialien entwickelt. Eine Bioink enthielt das Nanomaterial Laponit (Ansatz II), welches bereits in anderen Studien vorteilhafte Effekte für Knochen-Tissue Engineering-Ansätze gezeigt hat. Die neuentwickelte Laponit-haltige Bioink erlaubte die Fabrikation von Konstrukten mit hoher Formgenauigkeit. Darüber hinaus war die Zellviabilität, sowie die Zelldichteentwicklung erhöht im Vergleich zu einer Laponit-freien Kontrolle. Da Laponit eine heterogene Ladungsverteilung aufweist, wurde überprüft, inwieweit es ein geeignetes Freisetzungssystem für VEGF darstellt. Scaffolds, die aus einer VEGF-haltigen Paste hergestellt wurden, wiesen ein deutlich verändertes Freisetzungsprofil in Anwesenheit von Laponit auf, als Scaffolds ohne Laponit. So konnte eine initiale Freisetzung (Burstrelease) vermieden und gleichzeitig eine gleichmäßige Freisetzung beobachtet werden. VEGF war auch nach längerer Zeit im Scaffold noch biologisch aktiv. Die zweite Bioink wurde auf Basis gefrorenen, menschlichen Frischplasmas entwickelt. Blutplasma enthält Fibrinogen, das eine RGD-Sequenz für die Anheftung von MSC besitzt. Biogedruckte MSC, aber auch präosteoblastäre Zellen, zeigten eine hohe Neigung, sich in der Bioink aufzuspreizen, was für eingekapselte Zellen erschwert ist. Die plasmahaltige Bioink war dazu geeignet, zusammen mit CPC zu biphasigen Konstrukten (Ansatz I) verarbeitet zu werden. \par Dazu musste zunächst ein Postprozessierungsprotokoll für biphasige Konstrukte aus CPC und zellhaltigen Bioinks entwickelt werden. Aus vorherigen Studien ist bekannt, dass geplottete CPC-Konstrukte in wässrigen Lösungen Mikrorisse bilden, die die mechanischen Eigenschaften signifikant verschlechtern. Die Ausbildung der Mikrorisse kann durch eine Aushärtung in wasserdampfgesättigter Atmosphäre vermieden werden. In biphasigen Konstrukten mit Bioinks sollte diese Aushärtungsphase allerdings nur kurz sein, da eine lange Inkubation ohne wässrige Zellmedien zu einem Absterben der biogedruckten Zellen führen würde. Es konnte gezeigt werden, dass eine Inkubation für 20 min in wasserdampfgesättigter Atmosphäre ausreichend ist, um die Ausbildung von Mikrorissen im CPC zu vermeiden. Diese Zeitspanne konnte von den Zellen toleriert werden. In Kombination mit der plasmahaltigen Bioink wurde eine starke Proliferation und osteogene Reifung von biogedruckten präosteoblastären Vorläufern beobachtet. Schlussfolgerungen: In der vorliegenden Doktorarbeit wurde das Prinzip des extrusionsbasierten Biodrucks (3D-Plotten) verwendet, um biofunktionelle Konstrukte herzustellen. Dies erfolgte entweder durch die Beladung mit Wachstumsfaktoren oder mit Zellen vor der Fabrikation der Konstrukte. Bioaktive Materialien wurden entweder durch Multikanal-Plotten oder durch Supplementierung einer Bioink eingebracht. Beide Ansätze können prinzipiell sogar miteinander kombiniert werden. Die erzielten Ergebnisse belegen, dass Bioprinting eine geeignete Methode für das Knochen-Tissue Engineering darstellt. Patientenindividualisierte Konstrukte können mit dieser Technologie gefertigt werden. Auf diesen Ergebnissen aufbauend können weitere Untersuchungen in vivo die Wirksamkeit der vorgestellten Ansätze überprüfen und neue Therapieansätze für die Heilung von Knochendefekten entwickelt werden.:Abstract 9 Zusammenfassung 13 Index of Abbreviations 19 List of Figures 20 Preface 23 i generalis 1 introduction to the topic 29 1.1 Background 29 1.2 Terminology 29 1.3 Physiological Properties of Bone Tissue 31 1.3.1 Composition of Bone 31 1.3.2 Bone Cytology 33 1.3.3 Crosstalk 34 1.4 Bone Grafting 34 1.4.1 Biopolymers 35 1.4.2 Calcium Phosphates 38 1.4.3 Nanoclays 41 1.5 Additive Manufacturing in Medicine & Bioprinting 43 1.5.1 Additive Manufacturing in Tissue Engineering 43 1.5.2 Bioprinting Techniques 44 1.6 Bioinks & Biomaterial Inks 48 1.6.1 Rheology 48 1.6.2 Plottability & Shape Fidelity 49 1.6.3 Post-Processing 52 1.6.4 Biocompatiblity & Biodegradation 53 1.6.5 The Biofabrication Window 53 2 aim of the thesis 55 2.1 Preliminary Studies 55 2.2 Research Questions 57 ii specialis 3 A methylcellulose hydrogel as support for 3D plotting of complex shaped calcium phosphate scaffolds 61 4 Development of a clay based bioink for 3D cell printing for skeletal application 77 5 Bioprinting of mineralized constructs utilizing multichannel plotting of a self-setting calcium phosphate cement and a cell-laden bioink 97 6 A novel plasma-based bioink stimulates cell proliferation and differentiation in bioprinted, mineralized constructs 113 iii conclusio 7 Summary & Conclusion 133 7.1 Bioprinting of bone tissue constructs 133 7.2 Technological Improvements 134 7.3 Bioink Development 136 7.4 Limitations & Future Research Directions 138 Bibliography 140 Danke 155 Appendix Erklärungen zur Eröffnung des Promotionsverfahrens 165 Erklärung über die Einhaltung gesetzlicher Bestimmungen 166 Auszug aus dem Journal Citation Report 166 Conferences 167 / Background: The number of trauma-related bone fractures, fragility fractures resulting from osteoporosis or bone defects after tumor resections is increasing. The usability of autologous, but also allogenous and xenogenous bone grafts is limited. Bone grafts being manufactured using a tissue engineering approach are a promising alternative. For this, resorbable biomaterials are combined with biological components such as cells and growth factors. These functionalized constructs stimulate the formation of novel bone tissue after implantation in the patient and resorb in favor of regrowing, native bone. A new form of tissue engineering is 3D bioprinting. Biologically active proteins and/or cells are mixed with biomaterials and get fabricated to constructs by a convenient additive manufacturing technology. This offers great advantages. For example, the patient-specific tissue engineered constructs can be manufactured fitting exactly to the respective defect. Further, it allows full control about the porosity of the final construct which is considered to be advantageous for nutrient supply and vascularization. Most crucial, it allows the spatial distribution of cells within the three-dimensional construct, which facilitate the maturation of the construct to the tissue-like graft. Research Questions: In the last decade some technological challenges in the field of bioprinting have been solved. Nevertheless, for bone tissue engineering only a small number of approaches had been developed. One of the reasons for this is that bioprinting technologies usually enable the processing of materials that are chemically and mechanically rather distant from the bone, particularly hydrogels. These materials are less suitable as bone substitutes. The aim of this work was to research new approaches of extrusion-based (bio-)printing for bone tissue engineering strategies. For this purpose two promising approaches were investigated: (I) Multichannel printing of bioactive calcium phosphate cements in combination with biologically active hydrogels which were loaded either with growth factors or cells. (II) Development of a new bioink by supplementation of growth factor- or cell-laden hydrogels with a bioactive filler material. The presented studies of this thesis demonstrate the feasibility of these approaches as well as their limits. In addition, fundamental mechanical and biological properties of the bioprinted bone constructs are investigated. Materials and Methods: A technology that makes the principle of bioprinting possible is the so-called 3D plotting. With the aid of a multichannel plotter, multiphasic constructs can be fabricated (approach I), but of course also monophasic constructs are possible (approach II). For approach I, a clinically certified calcium phosphate cement (CPC) was used as bioactive component. For approach II, a less investigated nanomaterial called Laponite was used which was shown before to hold great potential for tissue engineering applications. The biopolymers alginate and methylcellulose formed the basis for plottable, growth factor-laden (biomaterial inks) and cell-laden (bioinks) pastes. For the development of one specific bioink, human fresh frozen plasma was used. Rheological properties of the newly developed biomaterial inks and bioinks were characterized, additionally mechanical properties of plotted constructs were investigated. Further studies investigated the swelling of the hydrogels and the porosity of the constructs. Particular attention was payed to the shape fidelity of the plotted structures. Different cell types were used according to the aim of the subject of research; special attention was payed to the use of mesenchymal stem cells which were plotted directly in combination with the biomaterial, forming the bioink. The angiogenic vascular endothelial growth factor (VEGF) was used as model protein for release studies from bioprinted structures; its biological activity was investigated by proliferation studies of human umbilical vein endothelial cells (HUVEC). Results Firstly, it was investigated whether multichannel plotting is a suitable technology for the fabrication of patient-specific CPC constructs. This was achieved by plotting of a fugitive methylcellulose support ink. This procedure allowed the manufacturing of inner cavities which would not have been possible with other scaffold fabrication methods. Moreover, it was possible to extract a scaphoid bone from a CT scan of a human hand which was modeled virtually and fabricated subsequently with high shape fidelity. Later it was demonstrated that this procedure can be adapted to biphasic constructs consisting of CPC and cell-laden hydrogels. This was achieved by developing and processing bioinks. Bioprinted cells can evoke biological effects in vitro and in vivo. For this purpose two bioinks were developed within this work acting as cell carrier materials. The first bioink contained the nano material Laponite (approach II) which has demonstrated positive effects for bone tissue engineering before. The novel Laponite-based bioink enabled the fabrication of constructs with high shape fidelity. Furthermore, cell viability and cell density were increased compared to a Laponite-free control. Since Laponite offers a heterogeneous charge distribution, it was investigated whether it is a suitable delivery system for VEGF. Scaffolds with Laponite demonstrated a distinct different release profile compared to Laponite-free scaffolds. Thus an initial burst-like release could be avoided and at the same time a uniform release could be observed. The released VEGF was biologically active also after longer time in the scaffold. The second bioink was developed using fresh frozen human blood plasma. Plasma contains fibrinogen which holds a RGD motif for the attachment of MSC. Bioprinted MSC and preosteoblastic cells showed a high affinity to spread within the bioink, which is difficult to achieve for encapsulated cells. The plasma-based bioink was suitable for the combined fabrication of biphasic constructs with CPC (approach I). To achieve this, firstly a suitable post-processing for biphasic constructs consisting of CPC and cell-laden bioinks had to be developed. From previous studies it is known that plotted CPC constructs form microcracks in aqueous media during setting, which impair mechanical properties. The formation of the microcracks can be avoided by setting in water-saturated atmosphere. In biphasic constructs with bioinks this phase should only be short since a long incubation in absence of aqueous cell culture media would lead to cell death within the bioink. It could be shown that incubation for 20 min in water-saturated atmosphere is convenient to avoid the formation of microcracks in CPC strands. This time could be tolerated by the cells. In combination with the plasma-based bioink, a strong proliferation and osteogenic maturation of bioprinted preosteoblastic cells could be observed. Conclusion: In this thesis, the principle of extrusion-based bioprinting (3D plotting) was used to fabricate biofunctionalized constructs. This was achieved by loading cells or growth factors before manufacturing of the constructs. Bioactive materials could be embedded into the constructs by either multichannel plotting or by supplementation of a bioink with a bioactive filler material. In principle both approaches even could be combined with each other. The results obtained prove that bioprinting is a suitable method for bone tissue engineering. Patient-specific constructs can be fabricated by this technology. Based on these results, further studies should be performed in vivo to investigate the potency of the approaches for the development of new regenerative therapies to treat bone defects.:Abstract 9 Zusammenfassung 13 Index of Abbreviations 19 List of Figures 20 Preface 23 i generalis 1 introduction to the topic 29 1.1 Background 29 1.2 Terminology 29 1.3 Physiological Properties of Bone Tissue 31 1.3.1 Composition of Bone 31 1.3.2 Bone Cytology 33 1.3.3 Crosstalk 34 1.4 Bone Grafting 34 1.4.1 Biopolymers 35 1.4.2 Calcium Phosphates 38 1.4.3 Nanoclays 41 1.5 Additive Manufacturing in Medicine & Bioprinting 43 1.5.1 Additive Manufacturing in Tissue Engineering 43 1.5.2 Bioprinting Techniques 44 1.6 Bioinks & Biomaterial Inks 48 1.6.1 Rheology 48 1.6.2 Plottability & Shape Fidelity 49 1.6.3 Post-Processing 52 1.6.4 Biocompatiblity & Biodegradation 53 1.6.5 The Biofabrication Window 53 2 aim of the thesis 55 2.1 Preliminary Studies 55 2.2 Research Questions 57 ii specialis 3 A methylcellulose hydrogel as support for 3D plotting of complex shaped calcium phosphate scaffolds 61 4 Development of a clay based bioink for 3D cell printing for skeletal application 77 5 Bioprinting of mineralized constructs utilizing multichannel plotting of a self-setting calcium phosphate cement and a cell-laden bioink 97 6 A novel plasma-based bioink stimulates cell proliferation and differentiation in bioprinted, mineralized constructs 113 iii conclusio 7 Summary & Conclusion 133 7.1 Bioprinting of bone tissue constructs 133 7.2 Technological Improvements 134 7.3 Bioink Development 136 7.4 Limitations & Future Research Directions 138 Bibliography 140 Danke 155 Appendix Erklärungen zur Eröffnung des Promotionsverfahrens 165 Erklärung über die Einhaltung gesetzlicher Bestimmungen 166 Auszug aus dem Journal Citation Report 166 Conferences 167

Page generated in 0.0451 seconds