• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 193
  • 105
  • 50
  • 25
  • 10
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 517
  • 120
  • 116
  • 68
  • 58
  • 58
  • 51
  • 50
  • 45
  • 41
  • 40
  • 38
  • 35
  • 33
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Review of Methods of Wastewater Reuse to Diminish Non-Biodegradable Organic Compounds.

Bitow Meles, Desbele January 2014 (has links)
Wastewater reuse is very important in water resource management for both environmental and economic reasons. Unfortunately, wastewater from textile industries is difficult to treat by convectional wastewater treatment technologies. Now days, polluted water due to color from textile dyeing and finishing industries is burning issue for researchers. Textile or industrial wastewaters contain non-biodegradable organic compounds, which cannot be easily biodegraded because of their complex chemical structure. Dye wastewater discharged from textile wastewaters is one example of non-biodegradable organic compounds and it is difficult to remove dye effluent by convectional wastewater treatment methods. Therefore, this thesis deals about a review of advanced treatment technologies, which can de-colorize and remove non-biodegradable organic compounds from textile wastewater effluents. In addition to this, the potential and limitation of these advanced treatment methods are reviewed. Advanced treatment technologies reviewed in this paper are; Adsorption process, Membrane bioreactor (MBR) and advanced oxidation process (AOPs).
262

Integrating Microbial Electrochemical Technology with Forward Osmosis and Membrane Bioreactors: Low-Energy Wastewater Treatment, Energy Recovery and Water Reuse

Werner, Craig M. 06 1900 (has links)
Wastewater treatment is energy intensive, with modern wastewater treatment processes consuming 0.6 kWh/m3 of water treated, half of which is required for aeration. Considering that wastewater contains approximately 2 kWh/m3 of energy and represents a reliable alternative water resource, capturing part of this energy and reclaiming the water would offset or even eliminate energy requirements for wastewater treatment and provide a means to augment traditional water supplies. Microbial electrochemical technology is a novel technology platform that uses bacteria capable of producing an electric current outside of the cell to recover energy from wastewater. These bacteria do not require oxygen to respire but instead use an insoluble electrode as their terminal electron acceptor. Two types of microbial electrochemical technologies were investigated in this dissertation: 1) a microbial fuel cell that produces electricity; and 2) a microbial electrolysis cell that produces hydrogen with the addition of external power. On their own, microbial electrochemical technologies do not achieve sufficiently high treatment levels. Innovative approaches that integrate microbial electrochemical technologies with emerging and established membrane-based treatment processes may improve the overall extent of wastewater treatment and reclaim treated water. Forward osmosis is an emerging low-energy membrane-based technology for seawater desalination. In forward osmosis water is transported across a semipermeable membrane driven by an osmotic gradient. The microbial osmotic fuel cell described in this dissertation integrates a microbial fuel cell with forward osmosis to achieve wastewater treatment, energy recovery and partial desalination. This system required no aeration and generated more power than conventional microbial fuel cells using ion exchange membranes by minimizing electrochemical losses. Membrane bioreactors incorporate semipermeable membranes within a biological wastewater treatment process. The anaerobic electrochemical membrane bioreactor described here integrates a microbial electrolysis cell with a membrane bioreactor using conductive hollow fiber membrane to produce hydrogen gas, treat wastewater and reclaim treated water. The energy recovered as hydrogen gas in this system was sufficient to offset all the electrical energy requirements for operation. The findings from these studies significantly improve the prospects for simultaneous wastewater treatment, energy recovery and water reclamation in a single reactor but challenges such as membrane biofouling and conversion of hydrogen to methane by methanogenesis require further study.
263

Productivity Studies Utilizing Recombinant CHO Cells In Stirred-Tank Bioreactors: A Comparative Study Between The Pitch-Blade And The Packed-Bed Bioreactor Systems

Hatton, Taylor Stephen 01 May 2012 (has links)
A recombinat Chinese Hamster Ovary (rCHO) cell line designated as CHO SEAP was utilized in this investigation to optimize protein production. Two bench top stirred-tank bioreactors, namely a pitched-blade and a packed-bed basket bioreactor, were utilized for a comparative study to determine which bioreactor would produce the best results in terms of protein production. The objective of this research project was to provide basic data that shows cells cultured in a packed-bed basket bioreactor in perfusion mode will generate more protein product than cells in batch mode suspension culture with a pitched-blade bioreactor. The packed-bed bioreactor creates a homeostatic environment similar to the environment found in vivo, where waste products are constantly removed and fresh nutrients are replenished. Closed batch cultures do not provide a homeostatic environment. In batch culture systems, nutrients are depleted and waste products accumulate. The results from this experiment could help investigators involved in protein and/or vaccine production facilities select the appropriate bioreactor and mode of operation to optimize cell productivity for generation of a specific protein product. CHO cells have been used for the production of vaccines, recombinant therapeutic proteins, and monoclonal antibodies, and these cells are now the cell line of choice in the biopharmaceutical industry. Traditional vaccine production methods in egg embryos are slow and outdated, whereas roller bottle-based cell culture techniques are time consuming and have limited scalability. These limitations justify the need for development of stirred tank bioreactors. Cells cultured in a packed-bed bioreactor are not exposed to hydrodynamic forces, as is the case with pitched-blade bioreactors, allowing for maximum growth and protein expression. This mode of operation involves the constant removal of media depleted of nutrients and the addition of fresh media with more nutrients to keep the cells growing. Long run times decrease the constant need for re-seeding cells and re-establishing seed cultures, thus, reducing setup time and labor dramatically. Secreted products are automatically separated from cells in perfusion, eliminating filtration and membrane fouling. A detailed description of both modes of operation are discussed in this thesis.
264

Removal Characteristics and Predictive Model of Pharmaceutical and Personal Care Products (PPCPs) in Membrane Bioreactor (MBR) Process / 膜分離活性汚泥法における残留医薬品類の除去特性と予測モデルの開発

Junwon, Park 23 September 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19984号 / 工博第4228号 / 新制||工||1654(附属図書館) / 33080 / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 田中 宏明, 教授 米田 稔, 講師 山下 尚之 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
265

Stress in a Microgravity Bioreactor

Kramarenko, George, 0000-0002-6990-5620 January 2021 (has links)
This project involves the design and development of a cell stretching bioreactor device that can work in conjunction with a Random Positioning Machine (RPM) apparatus. Microgravity environments, such as in space, have been shown to induce alterations in cellular development due to inadequate mechanical loading of biological tissue. Because of this, long-term spaceflight has led to many health concerns, including osteoporosis and muscle atrophy. Space travel is rare and costly, making this research difficult to conduct, however; techniques to simulate microgravity on Earth can be achieved by using a Random Positioning Machine. This device has been a beneficial tool used to study the effect gravity has on cellular growth, yet certain tissues in the body, such as bone and muscle, require mechanical stress, strain, and mechanical loading to develop properly. Because of this, a device that can induce strain on cells while subjected to microgravity conditions is needed to further improve cellular research for space exploration. The constructed bioreactor consists of 3D printed and custom-made components that can induce uniaxial cyclic strain on cells adhered to an elastic membrane. Validation and testing of the device have shown that this bioreactor is suitable for cellular experimentation to work in conjunction with an RPM to deliver a controlled amount of strain while under microgravity conditions. / Bioengineering
266

Pharmaceutical compounds; a new challenge for wastewater treatment plants

Dlugolecka, Maja January 2007 (has links)
Analytical analyses conducted at the Himmerfjärden WWTP (285.000 PE connected) identified 70 pharmaceutical compounds belonging to different therapeutic classes. Such organic micropollutants at low detected concentration range of µg - ng l-1 did not affect the treatment processes at WWTP. Results from analytical studies indicated continuous discharge of organic micropollutants to the surface water with a calculated load amounting to 1.51 kg day-1. Metoprolol, carbamazepine and naproxen were chosen for testing different removal methods. Oxygen Uptake Rate (OUR) tests were conducted to assess the bacterial activity of an activated sludge taken from a full scale aeration plant with the presence of selected target compounds. A semi-technical scale membrane bioreactor ZeeWeed10™, treating final effluent from the Himmerfjärden WWTP (Sweden) was seeded with activated sludge from full scale biological stage. The membrane bioreactor (MBR) system placed after the final treatment appeared to be an insufficient technology for removal of residual amounts of organic micropollutants from WWTP effluents. Batch test studies with activated sludge taken from the membrane bioreactor and with application of granular activated carbon (GAC) filtration resulted in giving an overall assessment of removal efficiency. Metoprolol and carbamazepine tend to be resistant to the biodegradation process and in the dosed high concentration lead to bacterial cell decomposition in the activated sludge. Apparently, removal efficiency for naproxen exceeded the value of 46% with the spiked initial amount of 3.3 mg NAP g-1 MLSS. Application of the GAC filtration proved to be an efficient technique for removal of pharmaceutical compounds from treated wastewater. Application of the statistical programme Modde7 was a time saving tool in studies of fouling occurrence. The effect of fouling phenomenon, which is a highly limiting factor for MBR performance, was minimised by adjusting the operational parameters as predicted by the Modde7 programme. / QC 20101104
267

Stress response of continued intensification of industrial production processes

Plencner, Eric Michael 24 October 2022 (has links)
No description available.
268

Study of the Effect of BiOWiSH Aqua on Simultaneous Nitrification and Denitrification in a Membrane Aerated Bioreactor

Arakaki, Joelle 01 June 2018 (has links) (PDF)
This research entails the investigation of the effects of a bioaugmentation product from BiOWiSH® called Aqua, referred to as “Aqua” for the remainder of this paper, on the nitrogen removal rate in a membrane aerated bioreactor (MABR). This research was conducted using a MABR design that consisted of a silicone membrane and continuous flow airline with compressed air. The membrane system was designed to supply oxygen, creating an aerated layer at the membrane-biofilm interface and an anoxic layer at the biofilm-water interface. Laboratory experiments were conducted to compare the nitrogen removal rates of natural bacteria alone to natural bacteria paired with Aqua. However, it was not possible to determine if a difference existed between the nitrogen removal rates of the MABR systems with only natural bacteria versus those with natural bacteria augmented with Aqua. The mean nitrogen removal rate observed when the media in the system reached steady state was 0.39 mg-N/L-hr. with a carbon to nitrogen (C: N) ratio of 12:1. The only increase in the nitrogen removal rate observed was when the C: N ratio was doubled to 24:1 and the nitrogen removal rate increased to 0.56 mg-N/L-hr. Although it appeared that the Aqua did not have an influence on the nitrogen removal rate in the MABR systems, many other variables still need to be assessed to reach a conclusion. To improve the efficiency of the system more tubing should be added, or the glucose should be removed from the growth media because the maximum O2 mass transfer rate is only enough O2 for nitrification. The addition of glucose at 12:1 ratio increased the O2 demand in the system to be five times greater than the O2 supplied from the silicone tubing. This research determined that use of trace minerals, Aqua dosing method, and Aqua dosing concentration were not contributing factors in nitrogen removal from growth media under the conditions of this experiment.
269

Modeling Microbiological And Chemical Processes In Municipal Solid Waste Bioreactor: Development And Applications Of A Three-pha

Gawande, Nitin 01 January 2009 (has links)
The numerical computer models that simulate municipal solid waste (MSW) bioreactor landfills have mainly two components--a biodegradation process module and a multi-phase flow module. The biodegradation model describes the chemical and microbiological processes of solid waste biodegradation. The models available to date include predefined solid waste biodegradation reactions and participating species. In a bioreactor landfill several processes, such as anaerobic and aerobic biodegradation, nitrogen and sulfate cycling, precipitation and dissolution of metals, and adsorption and gasification of various anthropogenic organic compounds, occur simultaneously. These processes may involve reactions of several species and the available biochemical models for solid waste biodegradation do not provide users with the flexibility to selectively simulate these processes. This research work includes the development of a generalized biochemical process model, BIOKEMOD-3P, which can accommodate a large number of species and process reactions. This model is able to simulate bioreactor landfill processes in a completely mixed condition; when coupled with a multi-phase model it will be able to simulate a full-scale bioreactor landfill. This generalized biochemical model can simulate laboratory and pilot-scale operations which are important to determine biochemical parameters important for simulation of full-scale operations. To illustrate application of BIOKEMOD-3P, two sets of laboratory MSW bioreactors were simulated in this research work. The first demonstrated simulation of data from anaerobic biodegradation of MSW in experimental bioreactors. In another application, simultaneous nitrification and denitrification processes in MSW bioreactors were simulated. The results from these simulations generated information about various modeling parameters that would help implement these processes in a full-scale bioreactor landfill operation.
270

Design and Optimization of a Blood Vessel Mimic Bioreactor System for the Evaluation of Intravascular Devices in Simple and Complex Vessel Geometries

Leifer, Sara M 01 November 2008 (has links) (PDF)
Coronary artery disease affects millions of people and the ability to detect and treat the disease is advancing at a rapid rate. As a result, the development of intravascular technologies is the focus of many medical device manufacturers. Specifically, coronary stent implantation is being performed in an increasing number of patients and a number of new stent designs have been introduced to the market, resulting in the need for improved preclinical testing methods. An in vitro tissue engineered “blood vessel mimic” (BVM) system has previously been established and its feasibility for the initial testing of newly emerging intravascular technology has been demonstrated. There are limitations that exist with this original design, however, and the focus of this thesis was to both improve and expand upon the original model. Therefore, research was conducted based on two specific aims. The first aim was to develop a more ideal BVM system to accommodate a wider range of stent lengths and diameters, while allowing for easy graft insertion and seal-ability. The second aim was to develop next generation BVM systems,focused on future needs and technology, such as long, angulated and bifurcated geometries. The work described in this thesis demonstrates that a BVM chamber can be created which has the advantages of easy graft insertion and seal-ability, as well as the ability to accommodate varying sizes of vessel scaffolds, all while maintaining the needs of a tissue engineering bioreactor system. The next generation BVM systems presented demonstrate that the BVM concept can be expanded to meet the needs of long, angulated and bifurcated geometries. Overall, the work in this thesis describes the design and optimization of an in vitro blood vessel mimic bioreactor system for the evaluation of intravascular devices, specifically coronary stents, in simple and complex vessel geometries.

Page generated in 0.0432 seconds