Spelling suggestions: "subject:"refinery,""
11 |
Optimization of Supply Chain Management and Facility Location Selection for a BiorefineryBowling, Ian Michael 2010 December 1900 (has links)
If renewable energy and biofuels are to attain success in the market place, each
step of their production and the system as a whole must be optimized to increase
material and energy efficiency, reduce production cost and create a competitive
alternative to fossil fuels. Systems optimization techniques may be applied to product
selection, process design and integration, feedstock procurement and supply chain
management to improve performance. This work addresses two problems facing a
biorefinery: technology selection and feedstock scheduling in the face of varying
feedstock supply and cost. Also addressed is the optimization of a biorefinery supply
chain with respect to distributed processing of biomass to bio-products via preprocessing
hubs versus centralized processing and facility location selection. Two formulations are
proposed that present a systematic approach to address each problem. Case studies are
included to demonstrate model capabilities for both formulations. The scheduling model
results display model sensitivity to feedstock price and transport distance penalized
through carbon dioxide emissions. The distributed model shows that hubs may be used
to extend the operating radius of a biorefinery and thereby increase profits.
|
12 |
Méthode multi-échelle pour la conception optimale d'une bioraffinerie multi-produit / Multiscale method for the optimal design of a multiproduct biorefineryBelletante, Ségolène 04 October 2016 (has links)
De nos jours, de nouvelles technologies sont développées pour produire efficacement des produits dérivés de matières premières autresque le pétrole, comme par exemple la biomasse. En effet, la biomasse et plus spécifiquement la biomasse non alimentaire possède un fort potentielcomme substitut aux ressources fossiles pour des raisons environnementales, économiques et politiques. Dans ce contexte, l’étude des bioraffineries offre de nouvelles opportunités pour le Process System Engineering et plus particulièrement pour des activités de recherche quivisent la conception de systèmes constitués d’entités interconnectés. En effet, le verrou principal se concentre sur la modélisation et l’optimisation multi-échelle de la bioraffinerie qui permet l’intégration de plusieurs échelles spatiales allant de l’échelle moléculaire à celle de l’unité de production. Ces différentes échelles sont essentielles pour décrire correctement le système puisqu’elles interagissent en permanence. La forte dilution des courants est le meilleur exemple pour illustrer ces interactions. En effet, la présence d’eau induit de nombreux problèmes thermodynamiques (azéotropes, etc.) à l’échelle moléculaire, ce qui impacte fortement la topologie du procédé notamment sur les étapes de séparation, de purification et detraitement des purges (pour limiter les pertes en produits). Ainsi, la performance de la séquence d’opérations unitaires de l’étape de purification dépend entièrement de la concentration en eau. De plus dans la conception de bioraffinerie, il est fréquent de coupler fermentation et séparation afin d’améliorer les performances de la fermentation et de limiter la présence d’eau dans l’étapede purification. Par ailleurs, la grande quantité d’eau à chauffer ou refroidir entraine la nécessité de réaliser l’intégration énergétique du réseaud’échangeurs du procédé afin de minimiser le coût les dépenses énergétiques. L’objectif de ce travail est alors de proposer une méthodologie générique et les outils associés afin de lever certains verrous de la modélisation et l’optimisation multi-échelle de la bioraffinerie. Basée sur une approche par superstructure, la finalité de la méthodologie est d’évaluer les performances des alternatives étudiées en termes technico-économiques, environnementaux et d’efficacité énergétique en vue de son optimisation multi-objectifs pour trouver la voie de traitement optimale pour le(s) bioproduit(s) d’intérêt. Le cas d’application retenu se focalise sur la production de biobutanol à partir du système Acétone-Butanol-Ethanolet d’une biomasse d’origine forestière. La première étape de la méthodologie proposée concerne la création de la superstructure de la bioraffineriebasée sur une décomposition de cette dernière en 5 étapes principales : le prétraitement, la fermentation, la séparation, la purification et letraitement des purges. Ensuite, la seconde étape consiste à modéliser chaque alternative de procédé. Cette modélisation utilise un modèlethermodynamique à coefficients d’activité afin de décrire le comportement fortement non-idéal des molécules du milieu. De plus, l’intégration du traitement des purges et de l’intégration énergétique durant cette étape permet d’améliorer le procédé. Enfin, la dernière étape s’intéresse à l’optimisation multiobjectif qui se focalise sur différents aspects : maximisation de la production, minimisation des coûts, du prix minimal de vente des bioproduits, des pertes en produits et de l’impact environnemental. Cette dernière étape inclut également des études de sensibilité sur les différents paramètres de la méthodologie : opératoires, économiques, environnementaux... A l’issu de l’optimisation, un compromis seratrouvé afin d’obtenir une bioraffinerie durable. / Nowadays, to replace chemical products derived from petrol, new technologies are developed to produce products derived from others feedstock than crude oil like biomass. Indeed, biomass and especially nonfood biomass has a high potential as substitute due to its environmental, economic and political interests. Inthis context, the study of biorefineries offers new opportunities in the Process System Engineering and especially in research activities which aim to design systems with interlinked compounds. Indeed, the main hurdle focuses on the modeling and the multiscale optimization of thebiorefinery that allows integratingseveral spatial scales from the molecular scale to the plant scale. These scales are essential to describe accurately the system because they interact. The large dilution of flows is the best example to show these interactions. Indeed, water induces many thermodynamic problems (azeotropes, etc.) at the moleculescale, that impact on the process design and mainly on the separation, the purification and the treatment of purges (to limit losses of products). In consequence, the sequence of unit operations of the purification step depends of the water concentration. Furthermore, in the design of the biorefinery, the fermentation and theseparation are usually combined in order to improve performances of the fermentation and limit the water concentration in the purification step. Moreover, the large amount of water that needs to be heated or cooled induces the need of the energy integration of the heat exchangers network to minimize energy consumption. The aim of this work is to propose a generic methodology with connected tools in order to overcome some hurdles caused by the modeling and the multiscaleoptimization of the biorefinery. Based on the superstructure approach, the purpose of the methodology is to estimate performances of considered alternatives in the technical, economic, environmental and energy efficient aspects in preparation for the multiobjective optimization which finds the optimal process for the productionof the interesting bioproduct. This work focuses especially on the production of biobutanol through the Acetone-Butanol-Ethanol system from forest biomass. The methodology begins with the creation of the superstructure of the biorefinery composed by 5 major steps: the pretreatment, the fermentation, the separation, the purification and the treatment of purges. Next, the methodology consists in modeling each alternative of process. It integrates a thermodynamic model with activity coefficients in order to describe accurately the greatly nonideal behavior of molecules. Moreover, the treatment of purges and the energy integration are integratedat this step in order to improve the process. Finally, the last step interests to the multiobjective optimization which focuses on different aspects: the maximization of production and the minimization of the costs, the minimal selling price of bioproducts, the losses of bioproducts and the environmental impact. This step includes also sensitivity analysis on different parameters of the methodology: operating, economic, environmental… After the optimization, a compromise is made in order to obtain sustainable biorefinery.
|
13 |
Extraction of value-added chemicals from biorefinery residuesLiu, Yanguang January 1900 (has links)
Master of Science / Department of Grain Science and Industry / Praveen V. Vadlani / Large quantities of byproducts are generated during the biomass processing, which leads to under-utilization of resources and concomitant waste disposal problem. Typically, these byproducts still contain considerable amounts of high-value compounds that have important industrial applications. However, in current time, most of these byproducts are used for low-value applications, including as boiler fuel. These byproducts are potential sources for many valuable chemicals such as antioxidants, flavors, colorants, preservatives, and biocides. Therefore, the reuse and recycle of these biomass residues is very important for the bioeconomy. By some additional and necessary processing steps, we can transfer those biomass residues from a low-value level to a higher value status and apply the final products to various fields such as food industry, and pharmaceutical industry, etc. Till date, limited research has been reported in the production of important specialty chemicals from biomass residues. This thesis is focused on the solvent extraction and isolation of valuable chemicals from bioprocessing byproducts. While choosing different solvents and techniques, “environmental friendly” green solvents were also evaluated. Also some new techniques, such as thin-layer chromatography plates making and laboratory-made lignin are developed to make the research more economically feasible. Even though conventional extraction method such as solid-liquid extraction was evaluated, we tried to minimize the solvent/biomass ratio and also augmented additional processes to the conventional process to obtain higher yield of compounds of interest (COI).
In this research, different biomass resources were evaluated for valuable specialty chemicals. These resources include: lignocellulosic biomass and raw biomass. Lignocellulosic biomass is a sustainable feedstock for the production of biofuels and chemicals. The potential chemicals from the resources were extracted using various organic solvents and analyzed by gas chromatography-mass spectrometry (GC-MS). The results indicated that the selected biomass residues contain relatively higher amounts of three valuable compounds: vanillin, apocynin, and phytol. Different types of organic solvents and extraction techniques were tested to optimize the extraction process. Ultra-sonication was considered as an efficient extraction method and ethanol was chosen as the final solvent. Commercially viable isolation methods such as thin-layer chromatography (TLC) and column chromatography were also studied in this research. A solvent system of hexane, dichloromethane, ethyl acetate, and chloroform with 1:1:1:0.1 v/v ratio gave us a good separation of the COI. Biomass-derived lignin was made in the laboratory to compare with commercially available lignin. The results show that the laboratory-made lignin contains similar bioactive compounds and gives us a good quantity of target compounds.
In conclusion, instead of letting the byproducts being discarded or used as low-value applications or become a threat to the environment, the decision to select them as raw materials to produce valuable specialty targeted compounds for industries has been demonstrated in our research. The future research will focus on optimization and scale-up study of the extraction process. In addition, the application and production of bioactive compounds will be further evaluated.
|
14 |
The Cost of Producing Lignocellulosic Biomass for EthanolBusby, David Preston 11 August 2007 (has links)
The United States has become dependent on nonrenewable resources such as nuclear, coal, and crude oil as major sources of energy and fuel. Ethanol has been identified as a renewable fuel source that may help alleviate this dependence. Recent technological advances have developed a method to produce ethanol from lignocellulosic biomass. The purpose of this study is to determine production and transportation costs of switchgrass, eastern gammagrass, and giant miscanthus using Mississippi and Oklahoma data. This study also estimated the returns above the cost of feedstock for a biorefinery and the incentive package needed to pay for feedstock and construction cost. Results indicate cost difference across species, method of harvest, and location. The biorefinery returns and the incentive package explain the amount of capital needed for a biorefinery to compensate for the cost of feedstock and construction.
|
15 |
Interaction analysis between lignin and carbohydrate-binding module of cellobiohydrolase I from Trichoderma reesei / Trichoderma reesei由来セロビオヒドロラーゼIの糖質結合モジュールとリグニン間の相互作用解析Tokunaga, Yuki 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第23238号 / 農博第2445号 / 新制||農||1083(附属図書館) / 学位論文||R3||N5328(農学部図書室) / 京都大学大学院農学研究科応用生命科学専攻 / (主査)教授 渡邊 隆司, 教授 植田 充美, 教授 梅澤 俊明 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
16 |
Integration of xylan extraction from E. grandis, prior to pulping, into Kraft millsJoubert, Andre Jacobus 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Pulp and paper mills are being placed under increasing pressure to maximise the use of the
biomass being processed for pulp, and move towards integrated biorefineries (IFBRs), where a
diverse range of products can be produced and not just pulp exclusively. Extracting
hemicelluloses prior to the pulping process could increase the profitability of the mills as the
hemicelluloses could be used to produce a number of additional products. Hemicelluloses are a
plant polysaccharides with the most abundant hemicellulose in hardwoods being xylan, with
xylose being the primary monosaccharide constituent of xylan. The majority of pulps produced
in the Southern Hemisphere are done with hardwoods as feedstock, typically with the Kraft
process. The attraction of the concept of extracting hemicellulose prior to pulping is further
augmented by the fact that hemicellulose is underutilised in the Kraft process. In the Kraft
process the hemicellulose is dissolved during pulping and burned along with lignin for the
production of energy, however, hemicellulose has about half the heating value when compared
to that of lignin.
The main objective of this study was to find a pre-extraction method that is effective in
releasing xylan from Eucalyptus grandis, the most important hardwood feedstock used for
pulping in the Southern Hemisphere. The method also needs to be practical in terms of
integrating it into the Kraft process and should have a minimal effect on pulp yield and
subsequent paper qualities.
Xylan extractions from E. grandis as feedstock were carried out with white liquor, green liquor
and NaOH. Green liquor is the dissolved smelt originating from the recovery boiler in the Kraft
process and consists mainly sodium carbonate and sodium sulphide. White liquor’s principal
components include sodium hydroxide and sodium sulphide and is used in the digesters during
the pulping stage of the Kraft process. NaOH is a make up chemical used in the Kraft process.
These chemicals were chosen since they are all already present within the Kraft process. The
suitability of these chemicals as xylan extraction methods is further bolstered by the fact that
their alkalinity may actually reduce chemical usage in pulping. This provides scope for integration of hemicellulose extraction into Kraft pulping without implementing major changes
to the existing industrial process. Moreover, alkali chemicals for pre-extraction allow for
minimal effect on resulting pulp and paper. In terms of the extracted product, the alkaline
conditions provided by these chemicals create conditions that are suitable for a high degree of
polymerisation of hemicelluloses.
Xylan pre-extracted chips from selected extraction conditions were subjected to varying
pulping conditions, to replicate pulp yields and properties obtained with untreated E. grandis
chips when using conventional pulping. Handsheets were also produced from the pulps
produced under the highest pulp yield conditions, and these were tested for pulp quality
properties. Furthermore, mass balances were performed to gauge the impact that
hemicellulose pre-extraction would have using green liquor, white liquor and NaOH on the
sodium and sulphur balances of the mill.
From the extractions performed, the highest fraction of xylan recovered was 15.15% w/w
utilising 2M NaOH, at 120°C for 90 minutes extraction time. This was followed by white liquor
extraction at 13.27% w/w utilising 20% AA at 140°C for 90 minutes. Green liquor extraction
produced the lowest xylan recovery at 7.83% w/w with 2% TTA and 160°C with an h-factor of
800. The residues from selected extraction conditions were utilised for these pulping
optimisation experiments.
Selected extraction conditions used for further pulping included 2% TTA and 160°C for green
liquor, 20% AA and 120°C and 140°C extraction temperature for white liquor, as well as 2M
concentration and 120°C for NaOH.
The highest yielding pulping conditions were achieved with a 35% reduction in pulping
chemicals and 45 minutes pulping time in combination with green liquor pre-extraction, while
for pulping combined with white liquor pre-extraction a 50% reduction in chemicals and 30
minute pulping time was preferred. For pulping subsequent to NaOH pre-extraction a 75%
reduction in the NaOH dosage and a 45 minute pulp time was preferred. All pulp steps were
performed at 170°C.
Unbeaten handsheets produced from the selected pulping conditions for white liquor and
green liquor extracted chips showed similar physical properties (burst, tear, tensile indices)
when compared to the control (pulps from non-extracted chips). However the greater quantity
of xylan removed from cellulose fibres with NaOH extraction, resulted in pulps with lower xylan
contents, which affected the burst and tear indices of the handsheets formed from these pulps.
An increase in tear, while a reduction in the burst index, was observed for the pulp produced
from NaOH extracted chips.
It was concluded that although white liquor and NaOH extraction allows for greater xylan
recovery, the large chemical expenditure associated with these methods will impose significant
cost impacts on the existing Kraft process. From mass balances performed, green liquor xylan
extraction due to its lower alkalinity, will be more forgiving in terms of additional make up
chemical costs. It also allowed for minimum effect on both the pulp and paper quality, thus
making it the most practical of the pre-extraction methods. However, whether the additional
make chemicals required for the green liquor extraction method will be justified by the quantity
of xylan extracted will only be answered by a thorough economic assessment, which was not in
the scope of this project. / AFRIKAANSE OPSOMMING: Pulp- en papiermeule word onder toenemende druk geplaas om die gebruik van die biomassa
wat vir pulp verwerk word, te maksimaliseer, en om te beweeg na geïntegreerde
bioraffinaderye, waar ʼn groot verskeidenheid produkte vervaardig kan word, en nie slegs
uitsluitlik pulp nie. Die ekstraksie van hemisellulose voor die verpulpingsproses kan die
winsgewendheid van die meule verhoog, aangesien die hemisellulose gebruik kan word vir die
vervaardiging van verskeie bykomende produkte. Hemisellulose is ʼn plantpolisakkaried, met
xilaan as die hemisellulose wat die oorvloedigste in hardehout gevind word, en met xilose as die
primêre monosakkaried-bestanddeel van xilaan. Die meerderheid van die pulp wat in die
Suidelike Halfrond geproduseer word, word met hardehout as voerstof gedoen, tipies met
behulp van die Kraft-proses. Die aanloklikheid van die konsep om hemisellulose voor verpulping
te win, word verder versterk deur die feit dat hemisellulose in die Kraft-proses onderbenut
word. In die Kraft-proses word die hemisellulose tydens verpulping opgelos en saam met lignien
verbrand vir die opwekking van energie, maar hemisellulose het egter ongeveer die helfte van
die verhittingswaarde van dié van lignien.
Die vernaamste doelstelling van hierdie studie was om ʼn pre-ekstraksiemetode te vind wat
xilaan doeltreffend van Eucalyptus grandis, die belangrikste hardhout-voerstof wat in die
Suidelike Halfrond vir verpulping gebruik word, kan vrystel. Die metode moet ook prakties wees
met betrekking tot integrering met die Kraft-proses, en dit moet ʼn minimale uitwerking op
pulpopbrengs en gevolglike papiergehalte hê.
Xilaan-ekstraksie uit E. grandis as voerstof is uitgevoer met wit loog, groen loog en NaOH.
Hierdie chemikalieë is gekies omdat hulle reeds in die Kraft-proses teenwoordig is. Die
geskiktheid van hierdie chemikalieë as xilaan-ekstraksiemetodes is verder ondersteun deur die
feit dat hul alkaliniteit moontlik chemiese verbruik in verpulping kan verlaag, wat ruimte vir die
integrasie van hemisellulose-ekstraksie in Kraft-verpulping laat sonder om grootskaalse
veranderinge aan bestaande nywerheidsprosesse te implementeer. Alkali-chemikalieë vir preekstraksie
lei boonop tot ʼn minimale uitwerking op resultante pulp en papier, terwyl die alkalitoestande, met betrekking tot die geëkstraheerde produk, toestande skep wat geskik is vir
ʼn hoë mate van polimerisasie van hemisellulose.
Uit die ekstraksies wat uitgevoer is, is die hoogste fraksie xilaan gewin deur die gebruik van
NaOH teen 15.15% w/w met 2M NaOH, teen 120 °C vir 90 minute ekstraksietyd. Dit is gevolg
deur witloog-ekstraksie teen 13.27% w/w met die gebruik van 20% AA teen 140 °C vir 90
minute. Groenloog-ekstraksie het die laagste xilaan-winning teen 7.83% w/w met 2% TTA en
160°C met ʼn h-faktor van 800 voortgebring.
Houtspaanders wat aan xilaan-pre-ekstraksie met groen loog onderwerp is, het pulp met
kappanommers en opbrengste soortgelyk aan dié van nie-geëkstraheerde spaanders
voortgebring toe die chemiese lading met 35% verlaag is, in verhouding tot dít wat vir niegeëkstraheerde
spaanders gebruik is. Xilaan-pre-geëkstraheerde spaanders met wit loog het ʼn
50%-vermindering in verpulpingschemikalieë gelewer in verhouding tot houtspaanders wat aan
konvensionele verpulping onderwerp is. Die chemiese reduksie van groen loog was minder as
dié van wit loog weens die laer alkalilading wat tydens hemisellulose-ekstraksie voor verpulping
gebruik is. Vir witloog-ekstraksie kon pulpopbrengste gehandhaaf word, alhoewel pregeëkstraheerde
spaanders met wit loog ʼn neiging getoon het om pulp met laer kappanommers
voort te bring. Alhoewel pulp wat uit houtspaanders gemaak is wat aan NaOH-ekstraksie
onderwerp is, gelei het tot ʼn 75%-vermindering van NaOH gebruik in verhouding tot dié van
konvensionele verpulping, is verwag dat geen NaOH benodig sou word nie, aangesien die
houtspaanders reeds tydens xilaan-ekstraksie aan 2M NaOH blootgestel is. Voorts, in die
literatuur is verpulping uitgevoer ná 2M NaOH-ekstraksie sonder dat die toevoeging van NaOH
tydens verpulping nodig was [61].
Handvelle is vervaardig uit die pulp wat in die hoogste pulpopbrengs-toestande vervaardig is,
en dit is vir pulpgehalte-eienskappe getoets. Die verpulpingstoestande met die hoogste
opbrengs is bereik met ʼn 35%-vermindering van verpulpingschemikalieë en 45 minute
verpulpingstyd in kombinasie met groenloog-pre-ekstraksie, terwyl vir verpulping met witloogpre-
ekstraksie ʼn 50%-vermindering van chemikalieë en 30 minute verpulpingstyd verkies is. Vir verpulping ná NaOH-pre-ekstraksie is ʼn 75%-vermindering van die NaOH-dosis en 45 minute
verpulpingstyd verkies. Alle verpulpingstappe is teen 170°C uitgevoer.
Ongeklopte handvelle vervaardig uit die gekose verpulpingstoestande vir witloog- en
groenloog- geëkstraheerde spaanders het soortgelyke fisiese eienskappe getoon (bars-, skeuren
trek-indeks) in vergelyking met die kontrole (pulp uit nie-geëkstraheerde spaanders). Die
grootste hoeveelheid xilaan is egter uit sellulose vesel met NaOH-ekstraksie verkry, wat gelei
het tot pulp met laer xilaaninhoud, wat die bars- en skeur-indeks van die handvelle wat uit
hierdie pulp vervaardig is, beïnvloed het. ʼn Toename in die skeur-indeks, met ʼn afname in die
bars-indeks, is waargeneem vir die pulp wat uit NaOH-geëkstraheerde spaanders vervaardig is.
Die gevolgtrekking is gemaak dat alhoewel witloog- en NaOH-ekstraksie groter xilaanwinning
moontlik maak, die groot chemiese uitgawe geassosieer met hierdie metode ʼn aanmerklike
koste-impak vir die bestaande Kraft-proses inhou. Groenloog-xilaanekstraksie sal, weens die
laer alkaliniteit, meer geskik wees met betrekking tot die koste van bykomende aanvullende
chemikalieë. Dit hou ook ʼn kleiner uitwerking op die pulp- en papiergehalte in, wat dit dus die
praktieste van die pre-ekstraksiemetodes maak. Of die bykomende chemikalieë nodig vir die
witloog- en NaOH-ekstraksies egter geregverdig kan word deur die hoeveelheid xilaan wat
gewin is, kan slegs deur ʼn deeglike ekonomiese assessering beantwoord word, wat nie binne
die omvang van hierdie projek geval het nie.
|
17 |
Hydrophobic Coating on Cellulosic Textile Material by Betulin and a Betulin Based PolymerHuang, Tianxiao January 2016 (has links)
Betulin is a naturally abundant compound in the outer bark of birch and can be easily obtained by solvent extraction. Herein, solutions of betulin were used to treat cellulosic textile fibers and improve their water repellency. Cotton fabrics impregnated in a 7.5 g L-1 solution of betulin in ethanol showed the highest water contact angle of about 153° while the impregnation in a 3.75 g L-1 solution resulted in a close effect. A terephthaloyl chloride-betulin copolymer was synthesized and dissolved in tetrahydrofuran to afford a solution with a concentration of 3.75 g L-1. The cotton fabric impregnated in this solution showed a water contact angle of 150°. Changes in morphology of the cellulose fibers before and after the treatment were observed by scanning electron microscopy, and the water repellency was measured by a standard spray test. The marketing strategy of the potential product, which will be developed based on this technique, was discussed.
|
18 |
Waste Textiles Bioprocessing to Ethanol and BiogasJeihanipour, Azam January 2011 (has links)
The work of the present thesis focused on conversion of the cellulosic part of waste textiles into biogas and ethanol, and its challenges. In 2009, the global annual fiber consumption exceeded 70 Mt, of which around 40% consisted of cellulosic material. This huge amount of fibers is processed into apparel, home textiles, and industrial products, ending up as waste after a certain time delay. Regretfully, current management of waste textiles mainly comprises incineration and landfilling, in spite of the potential of cellulosic material being used in the production of ethanol or methane. The volume of cellulose mentioned above would be sufficient for producing around 20 billion liters of ethanol or 11.6 billion Nm3 of methane per year. Nevertheless, waste textiles are not yet accepted as a suitable substrate for biofuel production, since their processing to biofuel presents certain challenges, e.g. high crystallinity of cotton cellulose, presence of dyes, reagents and other materials, and being textiles as a mixture of natural and synthetic fibers. High crystallinity of cotton cellulose curbs high efficient conversion by enzymatic or bacterial hydrolysis, and the presence of non-cellulosic fibers may create several processing problems. The work of the present thesis centered on these challenges. Cotton linter and blue jeans waste textiles, all practically pure cellulose, were converted to ethanol by SSSF, using S. cerevisiae, with a yield of about 0.14 g ethanol/g textile, only 25% of the theoretical yield. To improve the yield, a pretreatment process was required and thus, several methods were examined. Alkaline pretreatments significantly improved the yield of hydrolysis and subsequent ethanol production, the most effective condition being treatment with a 12% NaOH-solution at 0 °C, increasing the yield to 0.48 g ethanol/g textile (85% of the theoretical yield). Waste textile streams, however, are mixtures of different fibers, and a separation of the cellulosic fibers from synthetic fibers is thus necessary. The separation was not achieved using an alkaline pretreatment, and hence another approach was investigated, viz. pretreatment with N-methyl-morpholine-N-oxide (NMMO), an industrially available and environment friendly cellulose solvent. The dissolution process was performed under different conditions in terms of solvent concentration, temperature, and duration. Pretreatment with 85% NMMO at 120 °C under atmospheric pressure for 2.5 hours, improved the ethanol yield by 150%, compared to the yield of untreated cellulose. This pretreatment proved to be of major advantage, as it provided a method for dissolving and then recovering the cellulose. Using this method as a foundation, a novel process was developed, refined and verified, by testing polyester/cellulose-blended textiles, which predominate waste textiles. The polyesters were purified as fibers after the NMMO treatments, and up to 95% of the cellulose content was regenerated. The solvent was then recovered, recycled, and reused. Furthermore, investigating the effect of this treatment on anaerobic digestion of cellulose disclosed a remarkable enhancement of the microbial solubilization; the rate in pretreated textiles was twice the rate in untreated material. The overall yield of methane was, however, not significantly affected. The process developed in the present thesis appears promising for transformation of waste textiles into a suitable raw material, to subsequently be used for biological conversion to ethanol and biogas. / <p>Thesis to be defended in public on Friday, May 27, 2011 at 13.00 at KC-salen, Kemigården 4, Göteborg, for the degree of Doctor of Philosophy.</p>
|
19 |
Influence de l’augmentation du taux de fibre de la canne à sucre sur les performances du complexe sucrerie – centrale thermique / Increase of sugarcane fibre impact on sugar and cogeneration plantCorcodel, Laurent 21 September 2011 (has links)
La canne à sucre est cultivée pour la production de sucre et d’électricité exportée sur le réseau. Actuellement, les taux de fibre de la canne dans les chargements livrés à l’usine augmente. L’objectif est de définir les conséquences de la réception de chargements contenant plus de fibres (lié aux variétés et au non canne) sur l’analyse de la canne et la performance du complexe sucrerie centrale thermique (production de sucre, de mélasse et d’électricité).La comparaison des méthodes d’analyses de la canne a permis de sélectionner la méthode Berding et Pollock comme méthode de référence pour l’analyse du sucre, de la matière sèche soluble et de la fibre.Une méthodologie d’analyse de la canne au laboratoire utilisant un broyeur et une presse est proposée Des relations sont établies pour calculer, en fonction des analyses effectuées sur le jus de presse et la bagasse, le débit horaire de canne, l’énergie nécessaire au broyage de la canne, le taux d’extraction du sucre dans le jus et le pouvoir calorifique de la bagasse. Ces mesures sont ensuite utilisées dans des bilans massique et énergétique de la sucrerie et de la centrale thermique. Ce bilan aboutit à la production de sucre cristallisable, de mélasse et d’électricité sur le réseau.Les résultats indiquent que par rapport à la R579, la variété fibreuse R585 produit 8% de sucre en moins et 51% d’électricité en plus alors que la R570 produit 3,9% de sucre en plus et 27% d’électricité supplémentaire. Par rapport à de la canne propre, une coupe de la canne entière entraine une diminution de la production de sucre de 16% et une augmentation de la production d’électricité de 21%. La coupe de canne avec feuilles entraine une baisse de 4% de la production de sucre et une augmentation de 12% de la production d’électricité. / Sugarcane is cultivated to produce sugar en electricity to the grind. Recently, the fibre content of cane delivered to the mill increase. Objective of this works is to determine the influence of cane delivered to the mill with more fibre (due to variety and trash) on cane analysis, sugar mills and energy plant complex performance (sugar, molasses and electricity production).Cane analysis method comparison show that Berding and Pollock method was the most appropriate for sugar, soluble dry matter and fibre in cane measurement.A laboratory cane analysis methodology using a grinder and a press is proposed. Relations are established to calculate according to juice and bagasse analysis, the cane capacity, energy for shredding cane, sugar extraction in juice and bagasse calorific value. Those analysis are used in mass and energy balance through the sugar and cogeneration plant. That balance conduct to crystallisable sugar, molasses and electricity exported.Results shows that compared to R579, the fibre variety R585 produce -8% of sugar and +51% of electricity, the R570 variety produce +3.9% of sugar and +27% of electricity. Compared to clean cane, whole crops harvesting decreased sugar (-16%) and electrical (-21%) production. Cane harvest with leaves conduct to a decrease of sugar (-4%) and increase of electrical (+12%) production.
|
20 |
Biorrefinaria para produção de furfural, lignina e etanol através da polpação soda com pré-hidrólise da madeira de eucalipto urograndis /Marcondes, Camila Juliane. January 2019 (has links)
Orientador: Gustavo Ventorim / Resumo: O setor de combustíveis líquidos tem passado por uma constante mudança no cenário econômico mundial. Com a previsão de esgotamento das fontes de combustíveis fósseis, a corrida por novas alternativas se tornou um marco das gerações passadas e futuras. O denominado etanol celulósico produzido através da biomassa pode ser a chave para a questão energética mundial, no entanto, este tipo de produto encontra como barreira o desenvolvimento de tecnologias mais acessíveis e a custos menores. Dentre os materiais utilizados, a madeira pode apresentar vantagens como: baixa perda por degradação, quando estabelecida rotações silviculturais não está sujeita a sazonalidade, dentre outras. Neste contexto, o presente trabalho teve como objetivo encontrar uma nova rota de produção de etanol celulósico a partir de cavacos de Eucalyptus urograndis e estudar o efeito da dosagem de fermento na etapa de conversão da glicose a etanol. O estudo foi realizado utilizando os processos de auto- hidrólise e polpação soda (23% de álcali ativo), como etapa de pré-tratamento da matéria prima, seguidos então, pela hidrólise ácida com ácido sulfúrico 72% e fermentação com 10, 20 e 30g da levedura Saccharomyces cerevisiae. Ao final foram analisados os rendimentos alcançados. O processo de fermentação mostrou uma eficácia de 90,05%, 88,29% e 79,57% para 10, 20 e 30 g, respectivamente, rendimentos ótimos para esta etapa. A utilização de 10 g foi suficiente para a etapa de fermentação frente as outras quantidades... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The liquid fuel industry has been undergoing a constant change in the world economic scenario for years, with the forecast of depletion of fossil fuel sources, the race for new alternatives has become a mark of past and future generations. The so-called cellulosic ethanol produced through biomass may be the key to the world energy issue, however, this type of product finds as a barrier the development of technologies more accessible and at lower cost. Among the materials used, wood can present advantages in terms of low degradation loss, when established silvicultural rotations are not subject to seasonality, among others. In this context, the present work aimed to find a new route for the production of cellulosic ethanol from Eucalyptus urograndis chips and to study the effect of yeast dosage on the conversion of glucose to ethanol. he process was carried out using the processes of autohydrolysis and sodium pulping (23% alcohol on the market), as the main process of pre-processing the raw material, followed by acid hydrolysis with 72% sulfuric acid and fermentation with 10, 20 and 30g of yeast Saccharomyces cerevisiae, at the end of the harvest. The fermentation process has an advantage of 90.05%, 88.29% and 79.57% for 10, 20 and 30 g, respectively, described as excellent for this stage. The use of 10g was sufficient for a fermentation step compared to other sources (20 and 30g), thus, a ratio of 1g of yeast to 4.7g.L-1. As a global result of the 100g initial chip discarding... (Complete abstract click electronic access below) / Mestre
|
Page generated in 0.0691 seconds