• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 101
  • 97
  • 63
  • 49
  • 40
  • 20
  • 18
  • 16
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Collagen Crosslinking Reagent Utilized to Modify the Mechanical Properties of the Soft Palate in Equine Snoring and Apnea Applications

Hunt, Stephanie L. 01 January 2015 (has links)
Snoring is a sleep disruption that can lead to obstructive sleep apnea (OSA), which interrupts breathing by obstructing the airway. Injecting a protein crosslinker, such as genipin, into the soft palate could decrease the severity of snoring and OSA by stiffening the soft palate. Equine soft palates modeled human palates due to a high incidence of awake snoring and apnea. The pilot in vivo study treated six horses with two 100 mM injections of the buffered genipin reagent. The efficacy phase horses underwent respiratory audio recordings to document snoring changes using Matlab and ImageJ in the time and frequency domains. Histological analysis was completed on the safety phase palates post treatment. All horses were successfully treated with the genipin injections. At least one horse showed high frequency amplitude reductions, and all horses had low frequency amplitude reductions, correlating to a reduction in palatal displacement and snoring loudness. One efficacy horse appears to have been completely cured. The histological analysis presented tissue damage, mucosal tissue damage, and mild inflammation due to palate expansion and errant injections. Different injection volumes and techniques should be investigated next. Applying this treatment to human studies for snoring and OSA applications is the ultimate goal.
82

ANALYSIS AND MODELING OF THE ROLES OF ACTIN-MYOSIN INTERACTIONS IN BLADDER SMOOTH MUSCLE BIOMECHANICS

komariza, Seyed Omid 01 January 2014 (has links)
Muscle mechanical behavior potentially plays an important role in some of the most common bladder disorders. These include overactive bladder, which can involve involuntary contractions during bladder filling, and impaired contractility or underactive bladder, which may involve weak or incomplete contractions during voiding. Actin-myosin cross-bridges in detrusor smooth muscle (DSM) are responsible for contracting and emptying the bladder. The total tension produced by muscle is the sum of its preload and active tensions. Studies suggest that actin-myosin cross-links are involved in adjustable preload stiffness (APS), which is characterized by a preload tension curve that can be shifted along the length axis as a function of strain history and activation history. DSM also exhibits length adaptation in which the active tension curve can exhibit a similar shift. Actin-myosin cross-bridges are also responsible for myogenic contractions in response to quick stretch of DSM strips and spontaneous rhythmic contractions (SRC) that may occur during bladder filling. Studies show that SRC may participate in the mechanical regulation of both APS and length adaptation. However, the mechanical mechanisms by which actin-myosin interactions enable this interrelated combination of behaviors remain to be determined and were the primary focus of this dissertation. The objectives of this study were to: 1) provide evidence to support the hypothesis that a common mechanism is responsible for SRC and myogenic contraction, 2) develop a sensor-based mechanical model to demonstrate that SRC in one cell is sufficient to trigger stretch-induced myogenic contraction in surrounding cells and propagate the contraction, and 3) develop a conceptual model with actin-myosin cross-bridges and cross-links that produces the coupled mechanical behaviors of APS, SRC, and length adaptation in DSM. Improved understanding of bladder biomechanics may enable the identification of specific targets for the development of new treatments for overactive and underactive bladder.
83

POLYSACCHARIDE-BASED SHEAR THINNING HYDROGELS FOR THREE-DIMENSIONAL CELL CULTURE

Surampudi, Vasudha 01 January 2015 (has links)
The recreation of the complicated tissue microenvironment is essential to reduce the gap between in vitro and in vivo research. Polysaccharide-based hydrogels form excellent scaffolds to allow for three-dimensional cell culture owing to the favorable properties such as capability to absorb large amount of water when immersed in biological fluids, ability to form “smart hydrogels” by being shear-thinning and thixotropic, and eliciting minimum immunological response from the host. In this study, the biodegradable shear-thinning polysaccharide, gellan-gum based hydrogel was investigated for the conditions and concentrations in which it can be applied for the adhesion, propagation and assembly of different mammalian cell types in an unmodified state, at physiological conditions of temperature. Cell studies, to show successful propagation and assembly into three-dimensional structures, were performed in the range of hydrogels which were deemed to be optimum for cell culture and the cell types were chosen to represent each embryonic germ layer, i.e., human neural stem cells for ectoderm, human brain microvasculature cells for mesoderm, and murine β-cells for endoderm, along with a pluripotent cell line of human induced pluripotent stem cells, derived from human foreskin fibroblasts. Three-dimensional cell organoid models, to allow for gellan gum based bioprinting, were also developed using human induced pluripotent stem cells and human neural stem cells.
84

QUANTIFICATION OF MYOCARDIAL MECHANICS IN LEFT VENTRICLES UNDER INOTROPIC STIMULATION AND IN HEALTHY RIGHT VENTRICLES USING 3D DENSE CMR

Liu, Zhan-Qiu 01 January 2019 (has links)
Statistical data from clinical studies indicate that the death rate caused by heart disease has decreased due to an increased use of evidence-based medical therapies. This includes the use of magnetic resonance imaging (MRI), which is one of the most common non-invasive approaches in evidence-based health care research. In the current work, I present 3D Lagrangian strains and torsion in the left ventricle of healthy and isoproterenol-stimulated rats, which were investigated using Displacement ENcoding with Stimulated Echoes (DENSE) cardiac magnetic resonance (CMR) imaging. With the implementation of the 12-segment model, a detailed profile of regional cardiac mechanics was reconstructed for each subject. Statistical analysis revealed that isoproterenol induced a significant change in the strains and torsion in certain regions at the mid-ventricle level. In addition, I investigated right ventricular cardiac mechanics with the methodologies developed for the left ventricle. This included a comparison of different regions within the basal and mid-ventricular regions. Despite no regional variation found in the peak circumferential strain, the peak longitudinal strain exhibited regional variation at the anterior side of the RV due to the differences in biventricular torsion, mechanism of RV free wall contraction, and fiber architecture at RV insertions. Future applications of the experimental work presented here include the construction and validation of biventricular finite element models. Specifically, the strains predicted by the models will be statistically compared with experimental strains. In addition, the results of the present study provide an essential reference of RV baseline evaluated with DENSE MRI, a highly objective technique.
85

Dynamics, Electromyography and Vibroarthrography as Non-Invasive Diagnostic Tools: Investigation of the Patellofemoral Joint

Leszko, Filip 01 August 2011 (has links)
The knee joint plays an essential role in the human musculoskeletal system. It has evolved to withstand extreme loading conditions, while providing almost frictionless joint movement. However, its performance may be disrupted by disease, anatomical deformities, soft tissue imbalance or injury. Knee disorders are often puzzling, and accurate diagnosis may be challenging. Current evaluation approach is usually limited to a detailed interview with the patient, careful physical examination and radiographic imaging. The X-ray screening may reveal bone degeneration, but does not carry sufficient information of the soft tissue conditions. More advanced imaging tools such as MRI or CT are available, but expensive, time consuming and can be used only under static conditions. Moreover, due to limited resolution the radiographic techniques cannot reveal early stage arthritis. The arthroscopy is often the only reliable option, however due to its semi-invasive nature, it cannot be considered as a practical diagnostic tool. Therefore, the motivation for this work was to combine three scientific methods to provide a comprehensive, non-invasive evaluation tool bringing insight into the in vivo, dynamic conditions of the knee joint and articular cartilage degeneration. Electromyography and inverse dynamics were employed to independently determine the forces present in several muscles spanning the knee joint. Though both methods have certain limitations, the current work demonstrates how the use of these two methods concurrently enhances the biomechanical analysis of the knee joint conditions, especially the performance of the extensor mechanism. The kinetic analysis was performed for 12 TKA, 4 healthy individuals in advanced age and 4 young subjects. Several differences in the knee biomechanics were found between the three groups, identifying age-related and post-operative decrease in the extensor mechanism efficiency, explaining the increased effort of performing everyday activities experienced by the elderly and TKA subjects. The concept of using accelerometers to assess the cartilage degeneration has been proven based on a group of 23 subjects with non-symptomatic knees and 52 patients suffering from knee arthritis. Very high success (96.2%) of pattern classification obtained in this work clearly demonstrates that vibroarthrography is a promising, non-invasive and low-cost technique offering screening capabilities.
86

The Effect of Hyperthermia on Doxorubicin Therapy and Nanoparticle Penetration in Multicellular Ovarian Cancer Spheroids

Nagesetti, Abhignyan 12 February 2017 (has links)
The efficient treatment of cancer with chemotherapy is challenged by the limited penetration of drugs into the tumor. Nanoparticles (10 – 100 nanometers) have emerged as a logical choice to specifically deliver chemotherapeutics to tumors, however, their transport into the tumor is also impeded owing to their bigger size compared to free drug moieties. Currently, monolayer cell cultures, as models for drug testing, cannot recapitulate the structural and functional complexity of in-vivo tumors. Furthermore, strategies to improve drug distribution in tumor tissues are also required. In this study, we hypothesized that hyperthermia (43°C) will improve the distribution of silica nanoparticles in three-dimensional multicellular tumor spheroids. Tumor spheroids mimic the functional and histomorphological complexity of in-vivo avascular tumors and are therefore valuable tools to study drug distribution. Ovarian cancer (Skov3) and uterine sarcoma (MES-SA/Dx5) spheroids were generated using the liquid overlay method. The growth ratio and cytotoxicity assays showed that the application of adjuvant hyperthermia with Doxorubicin (DOX) did not yield higher cell killing compared to DOX therapy alone. These results illustrated the role of spheroids in resistance to heat and DOX. In order to study the cellular uptake kinetics of nanoparticles under hyperthermia conditions, the experimental measurements of silica nanoparticle uptake by cells were fitted using a novel inverse estimation method based on Bayesian estimation. This was coupled with advection reaction transport to model nanoparticle transport in spheroids. The model predicted an increase in Area Under the Curve (AUC) and penetration distance (W1/2) that were validated with in-vitro experiments in spheroids. Based on these observations, a novel multifunctional theranostic nanoparticle probe was created for generating highly localized hyperthermia by encapsulating a Near Infrared (NIR) dye, IR820 (for imaging and hyperthermia) and DOX in Organically modified silica nanoparticles (Ormosil). Pegylated Ormosil nanoparticles had an average diameter of 58.2±3.1 nm, zeta potential of -6.9 ± 0.1 mV and high colloidal stability in physiological buffers. Exposure of the IR820 within the nanoparticles to NIR laser led to the generation of hyperthermia as well as release of DOX which translated to higher cell killing in Skov3 cells, deeper penetration of DOX into spheroids and complete destruction of the spheroids. In-vivo bio-distribution studies showed higher fluorescence from organs and increased plasma elimination life of IR820 compared to free IR820. However, possible aggregation of particles on laser exposure and accumulation in lungs still remain a concern.
87

Effects of Malformed or Absent Valves to Lymphatic Fluid Transport and Lymphedema in Vivo in Mice

Pujari, Akshay S. 27 October 2017 (has links)
Lymph is primarily composed of fluid and proteins from the blood circulatory system that drain into the space surrounding cells, interstitial space. From the interstitial space, the fluid enters and circulates in the lymphatic system until it is delivered into the venous system. In contrast to the blood circulatory system, the lymphatic system lacks a central pumping organ dictating the predominant driving pressure and velocity of lymph. Transport of lymph via capillaries, pre-collecting and collecting lymphatic vessels relies on the synergy between pressure gradients, local tissue motion, valves and lymphatic vessel contractility. The direction of lymph transport is regulated by bicuspid valves distributed throughout pre-collecting and collecting lymphatic vessels. Effective transport of lymph into the venous system is of prime importance. Disruption of lymph transport, because of impaired lymphatic function, reduced numbers of vessels or valvular insufficiencies can have severe health consequences, including lymphedema for which current clinical therapies are not curative. The lymphatic valves are usually bicuspid, however, congenital malformations in the valve such as single leaflet valve formation and arrested lymphatic valve development are observed and can cause lymphedema. Here we employ 4-week-old mice to study the effects of valves and malformed valves on lymph transport shedding light into some of the potentially underlying consequences of lymphedema. Polyethylene glycol (PEG) coated latex particles were injected into the inguinal lymph node of anesthetized mice. Particle displacement measurements through efferent lymphatic vessels yielded velocity, wall shear stress, vorticity and strain of the efferent lymph flow field carrying lymph from subdermal inguinal lymph nodes. Lymphatic vessel endothelial Prox1 green fluorescent protein (GFP) marker enabled the detection of lymphatic vessel walls and valves. Flow field, flow velocity, flow rate, velocity profiles, wall shear stress, vorticity and strain values were compared in regions downstream of normal and malformed valves in two wild type mice. A Clec2-deficient mouse, which experiences lymphatic development defects and is used as a lymphedema model, was employed to further elucidate the lymphatic valves on transport. The absence of centralized pumping yields highly variable lymphatic flow cycles varying from one to fifteen seconds. The presence of lymphatic valves introduces boundary conditions that yield spatial and temporal flow gradients increasing the degree of complexity of lymph transport. The valves dictate the trajectory of the particles and promote the formation of recirculation zones. Even in the presence of valves, lymph flow commonly reverses. Congenital defects like a single leaflet valve lowers the lymph flow efficiency and promotes higher wall shear stress regions. Furthermore, the absence of functional valves in the Clec2-deficient mouse not displaying lymphedema yielded lymph flow lacking the pulsatility that characterizes normal lymphatic flow.
88

Development of a crosslinked osteochondral xenograft and a collagen stabilizing intra-articular injection to remediate cartilage focal lesions to prevent osteoarthritis

Mosher, Mark Lewis 09 December 2022 (has links) (PDF)
Osteoarthritis is one of the most common causes of disability in adults in America. It is a progressive and degenerative disease where the articular cartilage is broken down and lost from the surfaces of bones causing chronic pain and swelling in the joints, and currently has no cure. The most commonly osteoarthritis starts from a focal lesion on the cartilage surface, which will expand on the surface and downwards through the thickness of the tissue. The current gold standard for correcting cartilage focal lesions is the osteochondral autograft/allograft transplantation (OAT), which replaces the defect with a fresh osteochondral graft. The main limiting factor for using the OAT comes from the limited number of autograft and allografts that are available for implantation. To address the concern of graft availability, this study will look at the development of a porcine osteochondral xenograft (OCXG). The first aim of this research is to establish a decellularization protocol that will remove the antigens and cellular debris, which are the leading causes of graft rejection when implanting animal tissue in humans. The second aim of this study is restoring the mechanical strength of the OCXG that was lost during the decellularization process through crosslinking the tissue using genipin and epigallocatechin gallate (EGCG). The third aim is comparing the performance of the complete crosslinked OCXG at different degrees of crosslinking in a long-term goat animal model. The final aim is an alternative way to correct focal lesions through the development of an injectable collagen stabilizing treatment with genipin and punicalagin that will slow or stop the growth of a lesion and prevent osteoarthritis.
89

Were Neandertal Humeri Adapted for Spear Thrusting or Throwing? A Finite Element Study

Berthaume, Michael Anthony 07 November 2014 (has links)
An ongoing debate concerning Neandertal ecology is whether or not they utilized long range weaponry. The anteroposteriorly expanded cross-section of Neandertal humeri have led some to argue they thrusted their weapons, while the rounder cross-section of Late Upper Paleolithic modern human humeri suggests they threw their weapons. We test the hypothesis that Neandertal humeri were built to resist strains engendered by thrusting rather than throwing using finite element models of one Neandertal, one Early Upper Paleolithic (EUP) human and three recent human humeri, representing a range of cross-sectional shapes and sizes. Electromyography and kinematic data and articulated skeletons were used to determine muscle force magnitudes and directions during three positions of spear throwing and three positions of spear thrusting. Maximum von Mises strains were determined at the 35% and 50% cross-sections of all models. During throwing and thrusting, von Mises strains produced by the Neandertal humerus fell roughly within or below those produced by the modern human humeri. The EUP humerus performed similarly to the Neandertal, but slightly poorer during spear thrusting. This implies the Neandertal and EUP human humeri were just as well adapted at resisting strains during throwing as recent humans and just as well or worse adapted at resisting strains during thrusting as recent humans. We also did not find any correlation between strains and biomechanical metrics used to measure humeral adaptation in throwing and thrusting (retroversion angle, Imax/Imin, J). These results failed to support our hypothesis and suggest they were capable of using long distance weaponry.
90

An Investigation of Humeral Stress Fractures in Racing Thoroughbreds Using a 3D Finite Element Model in Conjunction with a Bone Remodeling Algorithm

Moore, Ryan James 01 February 2010 (has links) (PDF)
The humerus of a racing horse Thoroughbred is highly susceptible to stress fractures at a characteristic location as a result of cyclic loading. The propensity of a Thoroughbred to exhibit humeral fracture has made equines useful models in the epidemiology of stress fractures. In this study, a racing Thoroughbred humerus was simulated during training using a 3D finite element model in conjunction with a bone remodeling algorithm. Nine muscle forces and two contact forces were applied to the 3-dimensional finite element model, which contains four separate load cases representing fore-stance, mid-stance, aft-stance, and standing. Four different training programs were incorporated into the model, which represent Baseline Layup and Long Layup training programs along with two newly implemented programs for racing, which have an absence of a layup period, last a period of 24 weeks, and a race once every four weeks. Muscle and contact forces were rescaled for all load cases to simulate dirt, turf, and synthetic track surfaces. Bone porosity, damage, and BMU activation frequency were examined at the stress fracture site and compared with a control location called the caudal diaphysis. It was found that race programs exhibited similar remodeling patterns between each other. Damage at the stress fracture site and caudal diaphysis was reduced during all training programs for the turf and synthetic track surfaces with respect to the dirt track surface. Key findings also included changes in bone remodeling at the stress fracture site and caudal diaphysis as a result of turf and synthetic track surfaces. This model can serve as a framework for further studies in human or equine athletes who are susceptible to stress fractures.

Page generated in 0.0516 seconds