• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 6
  • 6
  • 6
  • 1
  • 1
  • Tagged with
  • 73
  • 20
  • 13
  • 12
  • 11
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Using Augmented Reality For Studying Left Turn Maneuver At Un-signalized Intersection And Horizontal Visibility Blockage

Moussa, Ghada 01 January 2006 (has links)
Augmented reality "AR" is a promising paradigm that can provide users with real-time, high-quality visualization of a wide variety of information. In AR, virtual objects are added to the real-world view in a real time. Using the AR technology can offer a very realistic environment for driving enhancement as well as driving performance testing under different scenarios. This can be achieved by adding virtual objects (people, vehicles, hazards, and other objects) to the normal view while driving in a safe controlled environment. In this dissertation, the feasibility of adapting the AR technology into traffic engineering was investigated. Two AR systems; AR Vehicle "ARV" system and Offline AR Simulator "OARSim" system were built. The systems' outcomes as well as the on-the-road driving under the AR were evaluated. In evaluating systems' outcomes, systems were successfully able to duplicate real scenes and generate new scenes without any visual inconsistency. In evaluating on-the-road driving under the AR, drivers' distance judgment, speed judgment, and level of comfort while driving were evaluated. In addition, our systems were used to conduct two traffic engineering studies; left-turn maneuver at un-signalized intersection, and horizontal visibility blockage when following a light truck vehicle. The results from this work supported the validity of our AR systems to be used as a surrogate to the field-testing for transportation research.
32

Extended Momentum Model for Single and Multiple Hydrokinetic Turbines in Subcritical Flows

Cacciali, Luca 19 April 2023 (has links)
This thesis proposes equations extending the Free Surface Actuator Disc Theory to yield drag forces and interference factors from a series of two porous discs in open channel flows. The new model includes blockage ratio and Froude number as independent variables, which are inferred in advance to yield a single solution in the prescribed domain. The theoretical extension is integrated with the Blade Element Theory in a Double Multiple Streamtube model (DMS) to predict axial loads and the performance of confined Darrieus turbines. The turbine thrust force influences the flow approaching the rotor. Hence, a momentum method is applied to solve the hydraulic transition in the channel, achieving the unknown inflow factor from the undisturbed flow imposed downstream. The upstream blockage ratio and Froude number are thus updated iteratively to adapt the DMS to subcritical applications. The DMS is corrected further to account for the energy losses due to mechanical struts and turbine shaft, flow curvature, turbine depth, and streamtube expansion. Sub-models from the literature are partly corrected to comply with the extended actuator disc model. The turbine model is validated with experimental data of a high-solidity cross-flow hydrokinetic turbine that was previously tested at increasing rotor speeds. Turbine arrays are investigated by integrating the previous turbine model with wake sub-models to predict the plant layout maximizing the array power. An assessment of multi-row plants shows that the array power improves with closely spaced turbines. In addition, highly spaced arrays allow a partial recovery of the available power to be exploited upstream by a new turbine array. The highest array power is predicted by simulations on different array layouts considering constant array blockage ratio and rotor solidity. Finally, assuming a long ideal channel, the deviation in the inflow depth is speculated to become asymptotic after many arrays, implying almost identical power conversion upstream.
33

A Parametric Study to Quantify the Pressure Drop of Pulsating Flow through Blockages

Pappu, Suryanarayana 13 October 2014 (has links)
No description available.
34

Inclusion of Blockage Effects in Inverse Design of Centrifugal Pump Impeller Blades

Singh, Rahul 02 June 2015 (has links)
No description available.
35

The Effect of Particle Size on Deposition in an Effusion Cooling Geometry

Wolff, Trent M. 15 August 2018 (has links)
No description available.
36

A software package for the analysis of the severity of blockage of traffic signs during daytime for drivers of cars following trucks on urban highways

Sundarram, Satyanarayan January 1996 (has links)
No description available.
37

Wind tunnel blockage corrections forwind turbine measurements

Inghels, Pieter January 2013 (has links)
Wind-tunnel measurements are an important step during the windturbinedesign process. The goal of wind-tunnel tests is to estimate theoperational performance of the wind turbine, for example by measuringthe power and thrust coecients. Depending on the sizes of both thewind turbine and the test section, the eect of blockage can be substantial.Correction schemes for the power and thrust coecients havebeen proposed in the literature, but for high blockage and highly loadedrotors these correction schemes become less accurate.A new method is proposed here to calculate the eect a cylindricalwind-tunnel test section has on the performance of the wind turbine.The wind turbine is modeled with a simplied vortex model. Usingvortices of constant circulation to model the wake vortices, the performancecharacteristics are estimated. The test section is modeled witha panel method, adapted for this specic situation. It uses irrotationalaxisymmetric source panels to enforce the solid-wall boundary condition.Combining both models in an iterative scheme allows for thesimulation of the eect of the presence of the test-section walls on windturbines performace.Based on the proposed wind-tunnel model, a more general empirical correlationscheme is proposed to estimate the performance characteristicsof a wind turbine operating under unconned conditions by correctingthe performance measured in the conned wind-tunnel conguration.The proposed correction scheme performs better than the existing correctionschemes, including cases with high blockage and highly loadedrotors.
38

Investigation of nonlinear wave-induced seabed response around mono-pile foundation

Lin, Z., Pokrajac, D., Guo, Yakun, Jeng, D-S., Tang, T., Rey, N., Zheng, J., Zhang, J. 14 January 2017 (has links)
Yes / Stability and safety of offshore wind turbines with mono-pile foundations, affected by nonlinear wave effect and dynamic seabed response, are the primary concerns in offshore foundation design. In order to address these problems, the nonlinear wave effect on dynamic seabed response in the vicinity of mono-pile foundation is investigated using an integrated model, developed using OpenFOAM, which incorporates both wave model (waves2Foam) and Biot’s poro-elastic model. The present model was validated against several laboratory experiments and promising agreements were obtained. Special attention was paid to the systematic analysis of pore water pressure as well as the momentary liquefaction in the proximity of mono-pile induced by nonlinear wave effects. Various embedment depths of mono-pile relevant for practical engineering design were studied in order to attain the insights into nonlinear wave effect around and underneath the mono-pile foundation. By comparing time-series of water surface elevation, inline force, and wave-induced pore water pressure at the front, lateral, and lee side of mono-pile, the distinct nonlinear wave effect on pore water pressure was shown. Simulated results confirmed that the presence of mono-pile foundation in a porous seabed had evident blocking effect on the vertical and horizontal development of pore water pressure. Increasing embedment depth enhances the blockage of vertical pore pressure development and hence results in somewhat reduced momentary liquefaction depth of the soil around the mono-pile foundation. / Energy Technology Partnership (ETP), Wood Group Kenny, and University of Aberdeen; the National Science Fund for Distinguished Young Scholars (51425901) and the 111 project (B12032).
39

Using deep learning for IoT-enabled smart camera: a use case of flood monitoring

Mishra, Bhupesh K., Thakker, Dhaval, Mazumdar, S., Simpson, Sydney, Neagu, Daniel 15 July 2019 (has links)
Yes / In recent years, deep learning has been increasingly used for several applications such as object analysis, feature extraction and image classification. This paper explores the use of deep learning in a flood monitoring application in the context of an EC-funded project, Smart Cities and Open Data REuse (SCORE). IoT sensors for detecting blocked gullies and drainages are notoriously hard to build, hence we propose a novel technique to utilise deep learning for building an IoT-enabled smart camera to address this need. In our work, we apply deep leaning to classify drain blockage images to develop an effective image classification model for different severity of blockages. Using this model, an image can be analysed and classified in number of classes depending upon the context of the image. In building such model, we explored the use of filtering in terms of segmentation as one of the approaches to increase the accuracy of classification by concentrating only into the area of interest within the image. Segmentation is applied in data pre-processing stage in our application before the training. We used crowdsourced publicly available images to train and test our model. Our model with segmentation showed an improvement in the classification accuracy. / Research presented in this paper is funded by the European Commission Interreg project Smart Cities and Open Data REuse (SCORE).
40

A Study of Aerodynamics in Kevlar-Wall Test Sections

Brown, Kenneth Alexander 03 July 2014 (has links)
This study is undertaken to characterize the aerodynamic behavior of Kevlar-wall test sections and specifically those containing two-dimensional, lifting models. The performance of the Kevlar-wall test section can be evaluated against the standard of the hard-wall test section, which in the case of the Stability Wind Tunnel (SWT) at Virginia Tech can be alternately installed or replaced by the Kevlar-wall test section. As a first step towards the evaluation of the Kevlar-wall test section aerodynamics, a validation of the hard-wall test section at the SWT is performed, in part by comparing data from NACA 0012 airfoil sections tested at the SWT with those tested at several other reliable facilities. The hard-wall test section showing good merit, back-to-back tests with three different airfoils are carried out in the SWT's hard-wall and Kevlar-wall test sections. Kevlar-wall data is corrected for wall interference with a panel method simulation that simulates the unique boundary conditions of Kevlar-wall test sections including the Kevlar porosity, wall deflection, and presence of the anechoic chambers on either side of the walls. Novel measurements of the boundary conditions are made during the Kevlar-wall tests to validate the panel method simulation. Finally, sensitivity studies on the input parameters of the panel method simulation are conducted. The work included in this study encompasses a wide range of issues related to Kevlar-wall as well as hard-wall tunnels and brings to light many details of the performance of such test sections. / Master of Science

Page generated in 0.0447 seconds