Spelling suggestions: "subject:"blockade""
41 |
Link Stability Analysis of Wireless Sensor Networks Over the Ocean SurfaceShahanaghi, Alireza 03 September 2021 (has links)
Ocean-surface Wireless Sensor Networks (WSN) are essential in various thalassic applications,
such as maritime communication, ocean monitoring, seawater examination, pollution
detection, etc. Formed by simple structured sensor nodes, ocean-surface WSN can improve
the data transmission rate, enhance the monitoring resolution, expand the geographical
coverage, extend the observation period, and lower the cost compared to the vessel-based
monitoring approaches. Despite the importance and the broad applications of ocean-surface
WSNs, little is known about the stability of the wireless links among the sensors. Especially,
research suffers from the lack of an accurate model that describes the environmnetal
effects, including the ocean surface movements and the wind speed on the link stability. The
inappropriate understanding of link stability can result in network protocols that are not
robust to environmental interruptions. Such a shortcoming decreases the network reliability
and degrades the accuracy of the network planning. To compensate for this shortcoming, in
this dissertation, we provide a thorough analysis on the stability of the wireless links over
the ocean. In particular, we investigate and capture the effects of ocean waves on the link
stability through the following steps. First, we use the linear wave theory and obtain a novel
stochastic model of Line-of-Sight (LoS) links over the ocean based on the realistic behavior
of ocean waves. Second, we present and prove an important theorem on the level-crossing
of Wide Sense Stationary (WSS) random processes, and combine that with our stochastic
model of LoS links to study two important indicators of link stability, i.e., the blockage probability
and the blockage and connectivity periods. The former indicates the probability that
a LoS link is blocked by the ocean waves while the latter determines the duration of on/off
periods of the LoS links over the ocean. The aforementioned stability parameters directly
affect different stages of network design, such as choosing the antenna height, planning the
sensors' deployment distances, determining the packet length, designing the retransmission
and scheduling strategies in the Medium Access Control (MAC) protocols and transport
layer protocols, selecting the fragmentation threshold in Internet Protocol (IP), etc., which
will be discussed in the respective chapters. In the last part of our dissertation, we investigate
the problem of linear prediction of ocean waves, which has special importance in the
design of ocean-surface WSNs. In this regard, we first introduce a low-complexity metric
for effectiveness of k-step-ahead linear prediction, which we refer to as efficiency curve. The
significance of efficiency curve becomes evident when we decide upon the number of previous
samples in the linear prediction model, and determine the extent to which the predictor
forecasts the future. After efficiency curve, we formulate an adaptive Wiener filter to predict
the ocean waves and adapt the prediction model according to the environmental changes. / Doctor of Philosophy / Covering almost three quarters of the earth and supplying half of its oxygen, oceans are
vital to the support of life on our planet. It is important to continuously monitor different
parts of the ocean environment for tracking climate changes, detecting pollution, etc. However,
the existing monitoring approaches have serious weaknesses, which prevent us from
constantly monitoring the state of ocean, and drastically limit the geographical coverage.
For instance, the traditional ocean monitoring system using oceanographic research vessels
is time-consuming and expensive. Besides, it has low resolution in time and space, which
poses serious challenges to oceanographers by providing under-sampled records of the ocean.
To compensate for these defects, one of the promising alternatives is to employ Wireless
Sensor Networks (WSN) which has many advantages, such as real-time access to data for
a longer period of time and a larger geographical coverage of the ocean, higher resolution
of monitoring, faster processing of collected data and instantaneous transmission to onshore
monitoring centers. With the benefit of simple structure sensor nodes, ocean-surface WSNs
can also decrease the cost by at least one order of magnitude compared to the conventional
approaches. Despite the advantages that ocean surface WSN have over traditional ocean
monitoring methods, ocean surface WSN research suffers from the lack of an accurate model
that describes the stability of wireless links among sensor nodes. While some of the existing
literature has developed accurate models of the electromagnetic wave propagation over the
ocean surface, they have failed to consider the environmental effects, such as ocean waves on
the stability of the links. To fill this void, in this dissertation, we investigate ocean surface
waves' effects on the Line-of-Sight (LoS) link between the sensors in an ocean-surface WSN.
Specifically, we derive the blockage probability, and the blockage and connectivity periods of
LoS links between a transmitter and receiver pair due to wave movements. In addition to the
link stability analysis, we dedicate the last part of this dissertation to look into the problem
of linear prediction of ocean waves, which has special importance in the design process of
ocean-surface WSNs. In this regard, we present a low-complexity metric for effectiveness of
k-step-ahead linear prediction, and formulate an adaptive Wiener filter to predict the ocean
waves and adapt the prediction model according to the environmental changes.
|
42 |
Effect Of Vehicles' / Blockage On Heat Release Rate In Case Of Tunnel FireKayili, Serkan 01 December 2009 (has links) (PDF)
Road and railways tunnels are constructed for decreasing the transportation time inside city or intercity. The fire safety systems are mounted for the safe use of tunnels. Therefore, it is important to accurately predict the fire-induced air velocity,temperature and smoke concentrations in tunnel fires in order to design efficient fire protection systems. To this end, scaled tunnel models are used and experiments are
carried to understand the phenomena on these tunnel models. In addition, the studies for investigating the tunnel fire phenomena and their methods of modeling techniques for fire experiments are mentioned. In the literature, there is no sufficient information about vehicles' / blockage effect on heat release rate and temperature distribution inside tunnel with different ventilation velocities. As a result, in order to
research this subject, the scaled model tunnel is constructed in Fluid Mechanics Laboratory. Based on the Froude number scaling, wood sticks with different configuration inside the model tunnel are burned in a controlled environment. The
heat release rate measurement, sampling of gases after combustion, mass loss rate of burning models and temperature distribution along the tunnels with different longitudinal ventilation velocities are measured to investigate the effect of different cross-sectional areas of the burning substances. Furthermore, the model vehicles having a square base area are built according to wood crib theory. The results are investigated with statistical techniques called " / Analysis of Variance" / and general results have been tried to be reached. It is determined that the variation of air velocity inside tunnel is not so effective, but model vehicle' / s cross sectional area is directly proportional to heat release rate.
|
43 |
Performance and application of the Modular Acoustic Velocity Sensor (M.A.V.S.) current meter for laboratory measurementsBesnard, Stephane 17 February 2005 (has links)
Every type of current meter is different and has its proper characteristics. Knowing the performance of a current meter is essential in order to use it properly either for field or laboratory measurements (such as in the Offshore Technology Research Center wave basin). A study of the MAVS (Modular Acoustic Velocity Sensor) in a wave basin is a first step essential for later deployment in real studies.
This thesis is based on data obtained from different series of laboratory measurements conducted in the OTRC wave basin. The objective of the first part of the study was to characterize the MAVS frequency response using benchmarks such as tow tests or wave tests. These benchmarks allowed us not only to characterize the sensor but also to eventually correct some of the measurement distortions due to flow blockage, vortex shedding, or vibrations of the mounting structure, for example.
After the preliminary study was done, we focused on the potential use of the MAVS in the OTRC wave basin. Indeed, in the case of a study of a scale model in the wave basin, the stresses applied to the model have to be accurately known. In the case of current-induced loads, this includes contributions from both the mean flow and the turbulence. Thus, after correcting the values measured by the MAVS, a mapping of the current jet was executed to determine its three-dimensional structure in the wave basin.
Knowing the structure of the current in the OTRC wave basin, it was then possible to define a domain in which the current can be considered uniform with a certain tolerable error. This domain of uniformity will allow us to validate the use of the OTRC wave basin to study large models such as FPSOs (Floating Production, Storage and Offloading Units).
|
44 |
Simulation, measurement and detection of leakage and blockage in fluid pipeline systemsOwowo, Julius January 2016 (has links)
Leakage and blockage of oil and gas pipeline systems, water pipelines, pipe-work of process plants and other pipe networks can cause serious environmental, health and economic problems. There are a number of non-destructive testing (NDT) methods for detecting these defects in pipeline systems such as radiographic, ultrasonic, magnetic particle inspection, pressure transient and acoustic wave methods. In this study, the acoustic wave method and a modal frequency technique, which based on a roving mass method, are used. The aim of the thesis is to employ acoustic wave propagation based methods in conjunction with stationary wavelet transform (SWT) to identify leakage and blockage in pipe systems. Moreover, the research is also aimed at using the difference of modal frequencies of fluid-filled pipes with and without defects and a roving mass, and consequently, to develop a roving mass-based defect detection method for pipelines. In the study, the acoustic finite-element analysis (AFEA) method is employed to simulate acoustic wave propagation in small and large air-filled water-filled straight pipe and pipe networks with leakage and blockage but without flow. Computational fluid dynamics (CFD) analysis was also employed to simulate acoustic wave propagation in air-and water-filled pipes with flow, leakage and blockage. In addition, AFEA was used to predict the modal frequencies of air- and water-filled pipes with leakage and blockage in the presence of a roving mass that was traversed along the axis of the pipes. Experimental testing was conducted to validate some of the numerical results. Two major experiments were performed. The first set of experiments consisted of the measurement of acoustic wave propagation in a straight air-filled pipe with leakage and blockage. The second set of experiments concerned the measurement of acoustic wave propagation in an air-filled pipe network comprising straight pipe, elbows and T-piece and flange. The AFEA and CFD analysis of fluid-filled pipe can be used to simulate the acoustic wave propagation and acoustic wave reflectometry of a fluid-filled pipe with leakage and blockage of different sizes down to a small leakage size of 1mm diameter and a blockage depth of 1.2mm in a pipe. Similarly, the AFEA method of a static fluid-filled pipe can be used to simulate acoustic wave modal frequency analysis of a fluid-filled pipe with leakage and blockage of different sizes down to a leakage of 1mm diameter and a blockage depth of 1.2mm. Moreover, the measured signal of acoustic wave propagation in an air-filled can be successfully decomposed and de-noised using the SWT method to identify and locate leakages of different sizes down to 5mm diameter, and small blockage depth of 1.2mm. Also, the SWT approximation coefficient, detail and de-noised detail coefficient curves of an air-filled pipe with leakage and blockage and a roving mass give leakage and blockage indications that can be used to identify, locate and estimate the size of leakage and blockage in a pipe.
|
45 |
Trajectoire et sillage d'un corps en chute libre en interaction avec un autre corps ou en présence d'un confinement / Path and wake of a falling body in interaction with another body or in presence of confinementBrosse, Nicolas 15 December 2010 (has links)
Un corps en chute libre dans un fluide sous l'effet de la gravité peut être soumis à des perturbations. De façon générale, celles-ci peuvent être dues aux mouvements propres du fluide porteur, à la présence d'autres corps mobiles ou encore à la présence de parois. Dans un premier temps, nous avons choisi de nous intéresser à l'interaction de deux disques identiques chutant dans un fluide de densité proche de celle du corps. Différents comportements d'interaction sont observés pour des disques de rapports de forme variable (diamètre sur épaisseur) et des nombres de Reynolds (effets inertiel sur effets visqueux) couvrant des trajectoires rectilignes et périodiques oscillantes. Lorsque les disques sont lâchés en tandem, ils s'attirent et se rencontrent. Après le contact, le comportement dépend du rapport de forme : les disques épais se séparent et tombent côte à côte, tandis que les disques minces continuent leur évolution ensemble dans une configuration relative stable. Lorsque les corps sont lâchés côte à côte, on observe une répulsion des corps qui se traduit par un éloignement horizontal. Une modélisation pour chacun de ces comportements (attraction, répulsion) a été proposée. Dans un deuxième temps, nous avons étudié l’effet de parois fixes sur le mouvement d'un disque isolé en chute libre. Les disques sont lâchés dans des tubes cylindriques créant différents rapports de confinement (diamètre du disque sur diamètre du tube). Nous avons mis en évidence que le comportement du corps dépendait du rapport de forme : la trajectoire d'un disque mince est déstabilisée par le confinement, alors que celle d'un disque épais est stabilisée. Des visualisations des sillages à l'aide de colorants ainsi que des simulations numériques de l'écoulement autour de disques fixes ont été réalisées et ont permis de mieux comprendre le rôle du sillage sur les interactions / A body falling in a fluid under the effect of gravity may be perturbed by the presence of other bodies or fixed boundaries. We first focused our attention on the interaction of two identical disks in freefall. We investigated the kinematics of disks with different aspect ratios (ratio of diameter to thickness) and with different initial relative positions, for a range of Reynolds numbers (ratio of inertial effects to viscous effects) covering both rectilinear trajectories and periodic, oscillating trajectories. When the disks are falling in tandem, the trailing body accelerates until it catches up the leading one. After the contact, the behaviour depends on the aspect ratio. Thicker disks separate and fall side by side and separated while thinner disks continue their fall together in Y or T reversed position. A model of the different types of interaction (entrainment by the wake and horizontal repulsion) is proposed. The second part of the study is devoted to the effect of fixed walls on the kinematics of freely falling bodies. The behaviour again depends strongly on the aspect ratio : a thin disk is destabilized when the blockage ratio (ratio of disk diameter to tube diameter) increases, whereas thicks disks are stabilized. In addition, visualizations of the wakes using dyes and numerical simulations for fixed disks were performed and provide a better understanding of the role of the wake in the interaction
|
46 |
Les expressions figées en arabe et en français dans une perspective traductologique / Fixed expressions in Arabic and French in a translatological perspectiveKajo, Koussay 27 June 2019 (has links)
L’expression figée représente une entité problématique aussi bien au niveau notionnel et phraséologique qu’au niveau traductologique. La présente étude, qui porte sur le français et sa traduction en arabe, a pour objectif de mieux définir cette entité en essayant d’en tracer les limites et d’en identifier les caractéristiques inhérentes.Ainsi, dans un premier temps, nous abordons la question de deux points de vue, sémanticosyntaxique et cognitif, tout en soumettant les axiomes de base de nos définitions à un examen approfondi pour en vérifier la pertinence. Puis, nous tentons de proposer, au vu des résultats obtenus, une définition pertinente autant que faire se peut.Nous traitons ensuite du figement sous un angle traductologique, en nous fixant comme objectif d’élaborer une méthode de traduction des expressions figées œuvrant sur les deux niveaux sémantique et stylistique, méthode qui pourrait servir de support éclaircissant les points capitaux à prendre en considération dans l’opération traduisante et tiendrait compte des inconvénients et défauts qui peuvent s’y manifester. / Fixed expressions are a problematic entity at both levels: at notional-phraseological level and at translatological level. The purpose of this study, which focuses on French and its translation into Arabic, is to delimit this entity by attempting to delimit its boundaries and to attribute to its inherent defining characteristics.Thus, at first, we approach the question from two points of view, semantico-syntactical and cognitive while subjecting the basic axioms of our definitions to an in-depth examination in order to verify its relevance.Then, we will deal with set expressions from a translatological point of view, with the aim of developing a method of translating fixed expressions working on both semantic and stylistic levels.This method could serve as a support clarifying the crucial points to be taken into consideration in the translating operation and would take into account the disadvantages and defects that can be manifested therein.
|
47 |
The Vicious Cycle of Unethical Behavior : A Model for Destructive Leadership in the Remote SettingLindner, Marcel, Malmio, Lauri January 2022 (has links)
Background: Destructive leadership seeks to explain how leaders create harmful outcomes in an organizational setting – and why do they choose to do so. However, as with most leadership theories, process models are designed with a traditional office setting in mind which has its own distinct characteristics. Remote working has surged in prevalence in the last two years due to the COVID-19 pandemic and features multiple key differences, including increased social isolation and a decrease in communication quality. The combination of this novel and different context with a high likelihood of employees experiencing destructive leadership during their career, it is of high relevance to critically examine destructive leadership processes in a remote setting. Purpose: The purpose of this study is to adapt the proposed framework of destructive leadership by Krasikova et al. (2013) in a remote working environment, and to provide a greater understanding of destructive leadership processes in a less familiar context. Through exploring a new working context, this research aims to expand the understanding of destructive leadership, its situational factors, processes, and possible destructive outcomes in the ‘modern’ workplace. Method: Our methods were built on the choices of inductive qualitative research. Ten semi-structured interviews with leaders and followers were conducted by utilizing the casemethod, and more precisely, the case-oriented research design. The use of case-oriented research design and thematic analysis allowed us to engage in within- and cross-case comparisons and enabled us to generate new insights and to further develop remote working specific factors in the destructive leadership processes. Conclusion: The results of the study demonstrate that remote working environment influences three main areas of destructive leadership: the organizational context behind the process of choosing to engage in destructive leadership, the process of discovery and organizational response, and by establishing feedback loops from existing destructive leadership that leads to further resource shortages.
|
48 |
The Use Of The Ucf Driving Simiulator To Test The Contribution Of Larger Size Vehicles (lsvs) In Rear-end Collisions And Red Light Running On Intersections.Harb, Rami Charles 01 January 2005 (has links)
Driving safety has been an issue of great concern in the United States throughout the years. According to the National Center for Statistics and Analysis (NCSA), in 2003 alone, there were 6,267,000 crashes in the U.S. from which 1,915,000 were injury crashes, including 38,764 fatal crashes and 43,220 human casualties. The U.S. Department of Transportation spends millions of dollars every year on research that aims to improve roadway safety and decrease the number of traffic collisions. In spring 2002, the Center for Advanced Traffic System Simulation (CATSS), at the University of Central Florida, acquired a sophisticated reconfigurable driving simulator. This simulator, which consists of a late model truck cab, or passenger vehicle cab, mounted on a motion base capable of operation with six degrees of freedom, is a great tool for traffic studies. Two applications of the simulator are to study the contribution of Light Truck Vehicles (LTVs) to potential rear-end collisions, the most common type of crashes, which account for about a third of the U.S. traffic crashes, and the involvement of Larger Size Vehicles (LSVs) in red light running. LTVs can obstruct horizontal visibility for the following car driver and has been a major issue, especially at unsignalized intersections. The sudden stop of an LTV, in the shadow of the blindness of the succeeding car driver, may deprive the following vehicle of a sufficient response time, leading to high probability of a rear-end collision. As for LSVs, they can obstruct the vertical visibility of the traffic light for the succeeding car driver on signalized intersection producing a potential red light running for the latter. Two sub-scenarios were developed in the UCF driving simulator for each the vertical and horizontal visibility blockage scenarios. The first sub-scenario is the base sub-scenario for both scenarios, where the simulator car follows a passenger car, and the second sub-scenario is the test sub-scenario, where the simulator car follows an LTV for the horizontal visibility blockage scenario and an LSV for the vertical visibility blockage scenario. A suggested solution for the vertical visibility blockage of the traffic light problem that consisted of adding a traffic signal pole on the right side of the road was also designed in the driving simulator. The results showed that LTVs produce more rear-end collisions at unsignalized intersections due to the horizontal visibility blockage and following car drivers' behavior. The results also showed that LSVs contribute significantly to red light running on signalized intersections and that the addition of a traffic signal pole on the right side of the road reduces the red light running probability.
|
49 |
An Extended Calibration and Validation of a Slotted-Wall Transonic Wall-Interference Correction Method for the National Transonic FacilityBailey, Matthew Marlando 26 November 2019 (has links)
Correcting wind tunnel data for wall interference is a critical part of relating the acquired data to a free-air condition. Accurately determining and correcting for the interference caused by the presence of boundaries in wind tunnels can be difficult especially for facilities employing ventilated boundaries. In this work, three varying levels of ventilation at the National Transonic Facility (NTF) were modeled and calibrated with a general slotted wall (GSW) linear boundary condition to validate the computational model used to determine wall interference corrections. Free-air lift, drag, and pitching moment coefficient predictions were compared for a range of lift production and Mach conditions to determine the uncertainty in the corrections process and the expected domain of applicability.
Exploiting a previously designed statistical validation method, this effort accomplishes the extension of a calibration and validation for a boundary pressure wall interference corrections method. The foundational calibration and validation work was based on blockage interference only, while this present work extends the assessment of the method to encompass blockage and lift interference production. The validation method involves the establishment of independent cases that are then compared to rigorously determine the degree to which the correction method can converge free-air solutions for differing interference fields. The process involved first establishing an empty-tunnel calibration to gain both a centerline Mach profile of the facility at various ventilation settings, and to gain a baseline wall pressure signature undisturbed by a test article. The wall boundary condition parameters were then calibrated with a blockage and lift interference producing test article, and final corrected performance coefficients were compared for varying test section ventilated configurations to validate the corrections process and assess its domain of applicability. During the validation process discrimination between homogeneous and discrete implementations of the boundary condition was accomplished and final results indicated comparative strength in the discrete implementation's ability to capture experimental flow physics.
Final results indicate that a discrete implementation of the General Slotted Wall boundary condition is effective in significantly reducing variations caused by differing interference fields. Corrections performed with the discrete implementation of the boundary condition collapse differing measurements of lift coefficient to within 0.0027, drag coefficient to within 0.0002, and pitching moment coefficient to within 0.0020. / Doctor of Philosophy / The purpose of conducting experimental tests in wind tunnels is often to acquire a quantitative measure of test article aerodynamic characteristics in such a way that those specific characteristics can be accurately translated into performance characteristics of the real vehicle that the test article intends to simulate. The difficulty in accurately simulating the real flow problem may not be readily apparent, but scientists and engineers have been working to improve this desired equivalence for the better part of the last half-century.
The primary aspects of experimental aerodynamics simulation that present difficulty in attaining equivalence are: geometric fidelity, accurate scaling, and accounting for the presence of walls. The problem of scaling has been largely addressed by adequately matching conditions of similarity like compressibility (Mach number), and viscous effects (Reynolds number). However, accounting for the presence of walls in the experimental setup has presented ongoing challenges for ventilated boundaries; these challenges include difficulties in the correction process, but also extend into the determination of correction uncertainties.
Exploiting a previously designed statistical validation method, this effort accomplishes the extension of a calibration and validation effort for a boundary pressure wall interference corrections method. The foundational calibration and validation work was based on blockage interference only, while this present work extends the assessment of the method to encompass blockage and lift interference production. The validation method involves the establishment of independent cases that are then compared to rigorously determine the degree to with the correction method can converge free-air solutions for differing interference scenarios. The process involved first establishing an empty-tunnel calibration to gain both a centerline Mach profile of the facility at various ventilation settings, and to gain a baseline wall pressure signature undisturbed by a test article. The wall boundary condition parameters were then calibrated with a blockage and lift interference producing test article, and final corrected performance coefficients were compared for varying test section ventilated configurations to validate the corrections process and assess its domain of applicability. During the validation process discrimination between homogeneous and discrete implementations of the boundary condition was accomplished and final results indicated comparative strength in the discrete implementation's ability to capture experimental flow physics.
Final results indicate that a discrete implementation of the General Slotted Wall boundary condition is effective in significantly reducing variations caused by differing interference fields. Corrections performed with the discrete implementation of the boundary condition collapse differing measurements of lift coefficient to within 0.0027, drag coefficient to within 0.0002, and pitching moment coefficient to within 0.0020.
|
50 |
Experimental studies of a small scale horizontal axis tidal turbineFranchini, Italo 17 November 2016 (has links)
The research in this thesis focuses on the investigation of tidal turbines using a small scale horizontal axis tidal turbine and a 2D hydrofoil testing rig, combining experiments with simulations to provide comprehensive results and to better understand some of the variables that affect their performance. The experimental campaigns were carried out at the University of Victoria fluids research lab and the Sustainable Systems Design Lab (SSDL). The experimental testing rigs were re-designed by the author and are now fully automated, including a friendly graphical user interface for easy implementation. Particle image velocimetry (PIV) technique was used as the quantitative flow visualization method to obtain the time-averaged flow fields.
This thesis presents three investigations. The first study aims to quantify the impacts of channel blockage, free surface effects and foundations on hydrokinetic turbine performance, using porous discs and an axial flow rotor. The results were used to cross-validate computational fluid dynamics (CFD) simulations. It was found that as wall blockage increases, thrust and power are incremented with and without the inclusion of free surface deformation. Discrepancies between simulations and experimental results on free surface effects compared to a slip wall were obtained and hence further research is recommended and the author gives some advice on how to proceed in this investigation.
The second study determines the performance of four hydrofoil candidates over a range of low Reynolds number (Re), delivering useful information that can be applied to low Re energy conversion systems and, specifically in this case, to improve the performance of the small scale tidal turbine at the SSDL lab. The study combines the 2D hydrofoil test rig along with PIV measurements in order to experimentally obtain lift and drag coefficients. The experiments were carried out in the recirculating flume tank over the range of low Re expected for the small scale rotor rig, in order to provide more accurate results to improve rotor blade design. In addition, numerical simulations using XFOIL, a viscid-inviscid coupled method, were introduced to the study. These results were analysed against experiments to find the most suitable parameters for reliable performance prediction. The final results suggested that adding a numerical trip at a certain chordwise distance produced more reliable results.
Finally, an experimental study on turbine rotor performance and tip vortex behavior was performed using again the rotor rig and PIV. Blade design and rotor performance were assessed, showing good agreement with Blade Element Momentum (BEM) simulations, particularly at predicting the tip speed ratio corresponding to the maximum power coefficient point. Regarding the wake structure, tip vortex locations (shed from the blade tips) were captured using PIV in the near wake region, showing evidence of wake expansion. The velocity and vorticity fields are also provided to contribute to the development and validation of CFD and potential flow codes. / Graduate / 0548 / 0547 / 0538 / iafranch@uvic.ca
|
Page generated in 0.0454 seconds