Spelling suggestions: "subject:"blunted"" "subject:"blunts""
1 |
Numerical Investigations of Transition in Hypersonic Flows over Circular ConesHusmeier, Frank January 2008 (has links)
This thesis focuses on secondary instability mechanisms of high-speed boundary layers over cones with a circular cross section. Hypersonic transition investigations at Mach 8 are performed using Direct Numerical Simulations (DNS). At wind-tunnel conditions, these simulations allow for comparison with experimental measurements to verify fundamental stability characteristics.To better understand geometrical influences, flat-plate and cylindrical geometries are studied using after-shock conditions of the conical investigations. This allows for a direct comparison with the results of the sharp cone to evaluate the influence of the spanwise curvature and the cone opening angle. The ratio of the boundary-layer thickness to the spanwise radius is used to determine the importance of spanwise curvature effects. When advancing in the downstream direction the radius increaseslinearly while the boundary-layer thickness stays almost constant. Hence, spanwise curvature effects are strongest close to the nose and decrease in downstream direction. Their influences on the secondary instability mechanisms provide some rudimentary guidance in the design of future high-speed air vehicles.In experiments, blunting of the nose tip of the circular cone results in an increase in critical Reynolds number (c.f. Stetson et al. (1984)). However, once a certain threshold of the nose radius is exceeded, the critical Reynolds number decreases even to lower values than for the sharp cone. So far, conclusive explanations for this behavior could not be derived based on the available experimental data. Therefore, here DNS is used to study the effect of nose bluntness on secondary instability mechanisms in order to shed light on the underlying flow physics. To this end, three different nose tip radii are considered-the sharp cone, a small nose radius and a large nose radius. A small nose radius moves the transition on-set downstream, while for a large nose radius the so-called transition reversal is observed. Experimentalists hold influences of the entropy layer responsible but detailed numerical studies may lead to alternateconclusions.
|
2 |
On the Behavior of the Gamma Function on the Negative SideNgo, Tri Minh 01 December 2012 (has links)
In this paper we analyze the behavior of the Gamma function at its critical points and points of discontinuity on the negative side of the x-axis. We will also explain the bluntness of the gamma function on this negative side.
|
3 |
Numerical Investigation of Fundamental Mechanisms in Hypersonic Transition to TurbulenceGoparaju, Hemanth January 2022 (has links)
No description available.
|
4 |
Longshot hypersonic wind tunnel flow characterization and boundary layer stability investigationsGrossir, Guillaume 01 July 2015 (has links)
The hypersonic laminar to turbulent transition problem above Mach 10 is addressed experimentally in the short duration VKI Longshot gun tunnel. Reentry conditions are partially duplicated in terms of Mach and Reynolds numbers. Pure nitrogen is used as a test gas with flow enthalpies sufficiently low to avoid its dissociation, thus approaching a perfect gas behavior. The stabilizing effects of Mach number and nosetip bluntness on the development of natural boundary layer disturbances are evaluated over a 7 degrees half-angle conical geometry without angle of attack. <p><p>Emphasis is initially placed on the flow characterization of the Longshot wind tunnel where these experiments are performed. Free-stream static pressure diagnostics are implemented in order to complete existing stagnation point pressure and heat flux measurements on a hemispherical probe. An alternative method used to determine accurate free-stream flow conditions is then derived following a rigorous theoretical approach coupled to the VKI Mutation thermo-chemical library. Resulting sensitivities of free-stream quantities to the experimental inputs are determined and the corresponding uncertainties are quantified and discussed. The benefits of this different approach are underlined, revealing the severe weaknesses of traditional methods based on the measurement of reservoir conditions and the following assumptions of an isentropic and adiabatic flow through the nozzle. The operational map of the Longshot wind tunnel is redefined accordingly. The practical limits associated with the onset of nitrogen flow condensation under non-equilibrium conditions are also accounted for. <p><p>Boundary layer transition experiments are then performed in this environment with free-stream Mach numbers ranging between 10-12. Instrumentation along the 800mm long conical model includes flush-mounted thermocouples and fast-response pressure sensors. Transition locations on sharp cones compare favorably with engineering correlations. A strong stabilizing effect of nosetip bluntness is reported and no transition reversal regime is observed for Re_RN<120000. Wavelet analysis of wall pressure traces denote the presence of inviscid instabilities belonging to Mack's second mode. An excellent agreement with Linear Stability Theory results is obtained from which the N-factor of the Longshot wind tunnel in these conditions is inferred. A novel Schlieren technique using a short duration laser light source is developed, allowing for high-quality flow visualization of the boundary layer disturbances. Comparisons of these measurement techniques between each other are finally reported, providing a detailed view of the transition process above Mach 10. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0537 seconds