1 |
Endverankerung und Übergreifung textiler Bewehrungen in Betonmatrices / End Anchorage and Overlapping of Textile Reinforcements in ConcreteLorenz, Enrico 11 June 2015 (has links) (PDF)
Die sichere Einleitung und Übertragung der wirkenden Kräfte ist Bedingung für die Funktionsfähigkeit und die vollständige Ausnutzung der Tragfähigkeit von Textilbetonbauteilen und -verstärkungsschichten. So kann es bei ungünstiger Konfiguration und Anordnung der Einzelkomponenten des Verbundbaustoffes zur Ausbildung einer Vielzahl verschiedener Verbundversagensformen kommen. Diese umfassen neben der Bildung von verbundschädigenden Delaminations- und Spaltrissen lokale Abplatzungen der Betondeckung oder einen vorzeitigen Auszug der Garne aus dem Beton. Besonders beansprucht sind in diesem Zusammenhang die bei einer Anwendung von Textilbeton erforderlichen Endverankerungs- und Stoßbereiche der textilen Bewehrungen.
Zur sicheren Ausbildung und Bemessung dieser wichtigen Detailpunkte liegen jedoch momentan noch keine umfassenden und zusammenhängenden Untersuchungen vor. Hauptziel der vorliegenden Dissertation war daher eine systematische Erforschung und Beschreibung des Tragverhaltens von Textilbeton in Endverankerungs- und Übergreifungsbereichen.
Eine funktionierende und schädigungsfreie Verbundkraftübertragung bildet die Grundlage für die sichere Lasteinleitung und -übertragung. Daher wurden im ersten Teil der Arbeit ausführliche Untersuchungen zur Charakterisierung der zwischen Bewehrungstextil und Feinbetonmatrix wirkenden Kräfte und -mechanismen durchgeführt. Nach der Entwicklung eines geeigneten Versuchsaufbaus erfolgten umfangreiche Parametervariationen zur experimentellen Überprüfung des textilspezifischen Verbundverhaltens. Den Schwerpunkt der Untersuchungen bildete die Identifikation und Bewertung der aus verschiedenen Verarbeitungsparametern der textilen Bewehrungen resultierenden Verbundeinflüsse. Die Versuchsergebnisse ermöglichen die Bestimmung der zugehörigen Verbundspannungs-Schlupf-Beziehungen (VSB) mithilfe eines erarbeiteten Modellierungsverfahrens. Die so ermittelten Verbundkennwerte bilden die Grundlage für die weiteren rechnerischen Untersuchungen.
Im zweiten Teil der Arbeit erfolgten Forschungen zum Tragverhalten von Endverankerungsbereichen. Hierbei stand der im Regelfall bemessungsrelevante Grenzzustand eines vorzeitigen Auszuges der Textilien aus der Betonmatrix im Mittelpunkt. Die Arbeiten umfassten experimentelle und theoretische Untersuchungen zur Beschreibung der Kraftübertragung. Aufbauend auf die ermittelten Verbundkennwerte wird ein unabhängiger analytischer Auswertealgorithmus zur Beschreibung des Verbundtragverhaltens in Endverankerungsbereichen dargestellt. Dieser ermöglicht eine detaillierte rechnerische Bestimmung der erforderlichen Endverankerungslängen von Textilbeton in Abhängigkeit konkreter bzw. untersuchter Bewehrungstextilien.
Den dritten Forschungsschwerpunkt bildeten Untersuchungen zum Tragverhalten von Übergreifungsstößen in Textilbetonbauteilen. Mithilfe von umfassenden experimentellen und theoretischen Analysen an unterschiedlich konfigurierten und bewehrten Textilbetonen konnten die maßgebenden Versagensmechanismen untersucht und grundlegende Vorgaben für die Bemessung und Ausführung der Übergreifungsbereiche abgeleitet werden. Die gewonnenen Erkenntnisse wurden anhand von großformatigen Bauteilversuchen mit entsprechend konstruierten Übergreifungsstößen bestätigt.
Zum Abschluss wird ein vereinfachtes Ingenieurmodell vorgestellt. Dieses erlaubt eine allgemeingültige und hinreichend genaue Bemessung der untersuchten Detailpunkte unter Beachtung der maßgebenden Grenzzustände. / The safe introduction and transmission of forces is a requirement for the workability as well as the possibility to make full use of the load bearing capacities of components and strengthening layers made of textile reinforced concrete. Accordingly, an unfavourable configuration and arrangement of the composite material’s individual components can lead to various modes of bond failure. These can result from the formation of bond damaging delamination cracks and longitudinal matrix splitting, local spalling of the concrete layer in the outer reinforcement layers or early yarn pull-out from the concrete. In this context, the areas of end anchorage and lap joints of the textile reinforcement, which cannot be avoided when using textile reinforced concrete, are particularly prone to failure.
However, no comprehensive and coherent investigations regarding the safe configuration and dimensioning of these essential details are available yet. Consequently, systematic research into textile reinforced concrete’s load-bearing behaviour in the areas of end anchorage and lap joints and the subsequent description was the main goal of this dissertation.
A working and damage-free transmission of bond force is the basis for a faultless load transmission and introduction. As a result, extensive tests concerning the characterization of the mechanisms and forces acting between reinforcing textile and fine grained concrete matrix were carried out as the first part of the investigations.
After an appropriate test setup had been developed, a great variety of parameters was applied to experimentally examine the bond behaviour specific to the textile. The determination of the influencing factors resulting from various parameters in the textile reinforcement’s processing was a focus in the research. Based on a specifically developed modelling technique, the test results could be used to calculate the corresponding bond stress-slip-relation. The bond parameters, which were determined like this, served as the basis for the following calculations.
The second part of the investigations was concerned with the load-bearing behaviour in end anchorage areas. In this case, the limit state of a yarn pull-out from the concrete matrix, which is usually essential for the dimensioning, was at the centre of attention. The investigations encompassed experimental and theoretical tests regarding the description of the force transmission. Based on the determined compound parameters, an independent analytic evaluation algorithm, which served to describe the load carrying behaviour of the bond in the end anchorage area, was presented. Through this algorithm, the detailed calculation of the required end anchorage lengths of textile reinforced concrete depending on the specific reinforcement textile was possible.
The third research focus was on tests regarding the load-bearing behaviour of lap joints in textile reinforced concrete components. With the help of comprehensive experimental and theoretical analyses of variously configured and reinforced textile reinforced concretes, the decisive failure mechanisms were examined. Furthermore, fundamental demands for the dimensioning and execution of the lap joint areas could be derived. The findings were confirmed through tests on large-sized building components with corresponding lap joints.
At the end of the investigations, a simplified engineering model is presented. This model makes a universally valid and exact dimensioning of the examined details possible while also paying attention to the decisive limit states.
|
2 |
Der Einfluss von Querzug auf den Verbund zwischen Beton und Betonstahl / Influence of transverse tension on bond behaviour between concrete and reinforcing steelRitter, Laura 14 April 2014 (has links) (PDF)
Der Verbundwerkstoff Stahlbeton zeichnet sich durch das effektive Zusammenwirken seiner beiden Einzelkomponenten Stahl und Beton aus. Dieses wiederum kann nur durch ausreichend gute Verbundbedingungen zwischen beiden Baustoffen gewährleistet werden. Die Verbundeigenschaften werden von zahlreichen Faktoren beeinflusst, zu denen u.a. die Oberflächenprofilierung des Stahls, die Betonfestigkeit und die Umschnürungswirkung durch den umgebenden Beton oder eine Querbewehrung zählen. Auch eine quer zum Stab angreifende Belastung kann einen erheblichen Einfluss auf den Verbundmechanismus und die Verbundversagensart haben. Bei Stahlbetonbauteilen unter einer zweiaxialen Zugbelastung, wie sie z.B. in Behälterwänden oder zweiachsig gespannten Platten auftritt, unterliegt die Bewehrung sowohl einer Längszug- als auch einer Querzugbeanspruchung.
Im Rahmen der vorliegenden Arbeit wurde der Einfluss einer Querzugbelastung auf das Verbundverhalten zwischen Rippenstählen und Normalbeton mit Hilfe von würfelförmigen Ausziehkörpern mit einer kurzen Verbundlänge untersucht. Dabei lag das Querzugniveau stets unterhalb der Risslast des Betons, so dass keine Risse entlang des einbetonierten Stabes auftraten. Neben der Höhe der Querzugbelastung wurden im Versuchsprogramm die Betonfestigkeit, der Stabdurchmesser und die Betondeckung variiert.
Anhand der Versuchsergebnisse konnte gezeigt werden, dass sich auch unter einer Querzugbelastung der Verlauf der Verbundspannungs-Schlupf-Beziehung nicht ändert. Die Art des Verbundversagens wird jedoch maßgeblich durch den Querzug beeinflusst, welcher ein Spaltbruchversagen in jedem Fall begünstigt. Mit steigendem Querzug tritt auch bei großen Betondeckungen statt eines Ausziehversagens ein Spaltbruchversagen ein. Mittels des vorgeschlagenen Berechnungsmodells können in Abhängigkeit des Querzugniveaus und der Größe der Betondeckung Grenzlinien für den Wechsel im Verbundversagensmodus bestimmt werden. Hierbei wurde ebenfalls der Einfluss der Probekörpergeometrie auf die Versuchsergebnisse in die Berechnung einbezogen, so dass die angegebenen Grenzlinien auch für reale Einbettungslängen der Bewehrung gelten.
Weiterhin wurde anhand der Versuchsdaten sowie eines Datensatzes aus der Literatur ein Verbundmodell für kurze Verbundlängen entwickelt, das den Einfluss der bezogenen Rippenfläche der Bewehrung und der Betonfestigkeit sowohl auf die Verbundspannungen als auch auf die zugehörigen Schlupfwerte berücksichtigt. Über einen zusätzlichen Datensatz zum Einfluss der Verbundlänge im Ausziehversuch konnte ebenfalls die Abhängigkeit zwischen den mittleren Verbundspannungen, den zugehörigen Schlupfwerten und der Verbundlänge spezifiziert werden. Somit ist eine Übertragbarkeit der Ergebnisse von Ausziehversuchen mit kurzen Verbundlängen auf eine reale Einbettungslänge im Bauteil möglich.
Für die Bemessung von Stahlbetonkonstruktionen in den Grenzzuständen der Tragfähigkeit und der Gebrauchstauglichkeit erfolgt die Ableitung geeigneter Verformungskriterien für die Relativverschiebung zwischen Betonstahl und Beton und deren Verifizierung an Versuchsdaten aus der Literatur. Die aufgestellten Verformungskriterien in Abhängigkeit der Stahlspannung erlauben eine direkte Ermittlung bemessungsrelevanter Verbundspannungen anhand experimenteller Ausziehversuche. Die Berücksichtigung einer Querzugbelastung ist dabei in allen vorgestellten Berechnungsansätzen ebenfalls möglich. / Reinforced concrete as composite material is characterised by an effective interaction of its individual components reinforcing steel and concrete. This only can be assured by adequate bond conditions between these two materials. The bond quality is influenced by a wide range of parameters, amongst others including the rib geometry of the bar, the concrete strength and the confining action by the surrounding concrete or transverse reinforcement. Moreover loads, which act transverse to the reinforcing bar, can influence the bond mechanism and the bond failure mode significantly. Reinforced concrete structures, such as containment walls or two-way slabs, are often exposed to multiaxial loading conditions. In case of biaxial tensile stresses, reinforcement and surrounding concrete are loaded in tension in longitudinal as well as in transverse direction.
An extensive experimental program was carried out in order to investigate the bond behaviour between reinforcing steel and normal strength concrete due to transverse tension. Cubic-shaped pullout specimens with a short bond length were used. The transverse tension level remained always below the cracking stress of concrete, meaning that no crack occurred along the pullout bar. The test program contained the variation of the transverse tension level, the concrete strength, the bar diameter and the concrete cover.
From the test results no systematic influence of the transverse tension level on the shape of the bond stress-slip-relationship can be detected. The bond failure mode is significantly influenced by transverse tension, which promotes splitting failure. The higher the transverse tension level, even for high concrete covers, splitting failure occurs instead of pulling out the bar. From the test results, a failure criterion depending on the concrete cover and the transverse tension level could be determined, which indicates the failure mode and corresponding bond stress. For this purpose, the influence of the specimen geometry on the test results was considered, which results in a failure criterion that is also valid for real embedment lengths of the reinforcement.
Furthermore, a bond model for short bond lengths has been developed, based on the test results and a dataset from literature. The model considers the influence of the related rib area of the reinforcing bar and the concrete strength on the bond stresses as well as on the corresponding slip values. By an additional dataset concerning the influence of bond length in pullout tests, the bond stresses and corresponding slip values could be specified as a function of the bond length. Therefore, the test results of pullout test with short bond lengths are transferable to real embedment lengths in structural elements.
For the structural design of reinforced concrete elements in the ultimate and serviceability limit states, appli\\-cable deformation criterions concerning the relative displacement between reinforcing steel and concrete has been derived and verified by test data from literature. By means of the developed deformations criterions dependent on the steel stress, design bond stresses can be determined directly from experimental pullout tests. The consideration of transverse tensile loads is also possible for all presented design formulas.
|
3 |
Der Einfluss von Querzug auf den Verbund zwischen Beton und BetonstahlRitter, Laura 28 November 2013 (has links)
Der Verbundwerkstoff Stahlbeton zeichnet sich durch das effektive Zusammenwirken seiner beiden Einzelkomponenten Stahl und Beton aus. Dieses wiederum kann nur durch ausreichend gute Verbundbedingungen zwischen beiden Baustoffen gewährleistet werden. Die Verbundeigenschaften werden von zahlreichen Faktoren beeinflusst, zu denen u.a. die Oberflächenprofilierung des Stahls, die Betonfestigkeit und die Umschnürungswirkung durch den umgebenden Beton oder eine Querbewehrung zählen. Auch eine quer zum Stab angreifende Belastung kann einen erheblichen Einfluss auf den Verbundmechanismus und die Verbundversagensart haben. Bei Stahlbetonbauteilen unter einer zweiaxialen Zugbelastung, wie sie z.B. in Behälterwänden oder zweiachsig gespannten Platten auftritt, unterliegt die Bewehrung sowohl einer Längszug- als auch einer Querzugbeanspruchung.
Im Rahmen der vorliegenden Arbeit wurde der Einfluss einer Querzugbelastung auf das Verbundverhalten zwischen Rippenstählen und Normalbeton mit Hilfe von würfelförmigen Ausziehkörpern mit einer kurzen Verbundlänge untersucht. Dabei lag das Querzugniveau stets unterhalb der Risslast des Betons, so dass keine Risse entlang des einbetonierten Stabes auftraten. Neben der Höhe der Querzugbelastung wurden im Versuchsprogramm die Betonfestigkeit, der Stabdurchmesser und die Betondeckung variiert.
Anhand der Versuchsergebnisse konnte gezeigt werden, dass sich auch unter einer Querzugbelastung der Verlauf der Verbundspannungs-Schlupf-Beziehung nicht ändert. Die Art des Verbundversagens wird jedoch maßgeblich durch den Querzug beeinflusst, welcher ein Spaltbruchversagen in jedem Fall begünstigt. Mit steigendem Querzug tritt auch bei großen Betondeckungen statt eines Ausziehversagens ein Spaltbruchversagen ein. Mittels des vorgeschlagenen Berechnungsmodells können in Abhängigkeit des Querzugniveaus und der Größe der Betondeckung Grenzlinien für den Wechsel im Verbundversagensmodus bestimmt werden. Hierbei wurde ebenfalls der Einfluss der Probekörpergeometrie auf die Versuchsergebnisse in die Berechnung einbezogen, so dass die angegebenen Grenzlinien auch für reale Einbettungslängen der Bewehrung gelten.
Weiterhin wurde anhand der Versuchsdaten sowie eines Datensatzes aus der Literatur ein Verbundmodell für kurze Verbundlängen entwickelt, das den Einfluss der bezogenen Rippenfläche der Bewehrung und der Betonfestigkeit sowohl auf die Verbundspannungen als auch auf die zugehörigen Schlupfwerte berücksichtigt. Über einen zusätzlichen Datensatz zum Einfluss der Verbundlänge im Ausziehversuch konnte ebenfalls die Abhängigkeit zwischen den mittleren Verbundspannungen, den zugehörigen Schlupfwerten und der Verbundlänge spezifiziert werden. Somit ist eine Übertragbarkeit der Ergebnisse von Ausziehversuchen mit kurzen Verbundlängen auf eine reale Einbettungslänge im Bauteil möglich.
Für die Bemessung von Stahlbetonkonstruktionen in den Grenzzuständen der Tragfähigkeit und der Gebrauchstauglichkeit erfolgt die Ableitung geeigneter Verformungskriterien für die Relativverschiebung zwischen Betonstahl und Beton und deren Verifizierung an Versuchsdaten aus der Literatur. Die aufgestellten Verformungskriterien in Abhängigkeit der Stahlspannung erlauben eine direkte Ermittlung bemessungsrelevanter Verbundspannungen anhand experimenteller Ausziehversuche. Die Berücksichtigung einer Querzugbelastung ist dabei in allen vorgestellten Berechnungsansätzen ebenfalls möglich. / Reinforced concrete as composite material is characterised by an effective interaction of its individual components reinforcing steel and concrete. This only can be assured by adequate bond conditions between these two materials. The bond quality is influenced by a wide range of parameters, amongst others including the rib geometry of the bar, the concrete strength and the confining action by the surrounding concrete or transverse reinforcement. Moreover loads, which act transverse to the reinforcing bar, can influence the bond mechanism and the bond failure mode significantly. Reinforced concrete structures, such as containment walls or two-way slabs, are often exposed to multiaxial loading conditions. In case of biaxial tensile stresses, reinforcement and surrounding concrete are loaded in tension in longitudinal as well as in transverse direction.
An extensive experimental program was carried out in order to investigate the bond behaviour between reinforcing steel and normal strength concrete due to transverse tension. Cubic-shaped pullout specimens with a short bond length were used. The transverse tension level remained always below the cracking stress of concrete, meaning that no crack occurred along the pullout bar. The test program contained the variation of the transverse tension level, the concrete strength, the bar diameter and the concrete cover.
From the test results no systematic influence of the transverse tension level on the shape of the bond stress-slip-relationship can be detected. The bond failure mode is significantly influenced by transverse tension, which promotes splitting failure. The higher the transverse tension level, even for high concrete covers, splitting failure occurs instead of pulling out the bar. From the test results, a failure criterion depending on the concrete cover and the transverse tension level could be determined, which indicates the failure mode and corresponding bond stress. For this purpose, the influence of the specimen geometry on the test results was considered, which results in a failure criterion that is also valid for real embedment lengths of the reinforcement.
Furthermore, a bond model for short bond lengths has been developed, based on the test results and a dataset from literature. The model considers the influence of the related rib area of the reinforcing bar and the concrete strength on the bond stresses as well as on the corresponding slip values. By an additional dataset concerning the influence of bond length in pullout tests, the bond stresses and corresponding slip values could be specified as a function of the bond length. Therefore, the test results of pullout test with short bond lengths are transferable to real embedment lengths in structural elements.
For the structural design of reinforced concrete elements in the ultimate and serviceability limit states, appli\\-cable deformation criterions concerning the relative displacement between reinforcing steel and concrete has been derived and verified by test data from literature. By means of the developed deformations criterions dependent on the steel stress, design bond stresses can be determined directly from experimental pullout tests. The consideration of transverse tensile loads is also possible for all presented design formulas.
|
4 |
Endverankerung und Übergreifung textiler Bewehrungen in BetonmatricesLorenz, Enrico 16 December 2014 (has links)
Die sichere Einleitung und Übertragung der wirkenden Kräfte ist Bedingung für die Funktionsfähigkeit und die vollständige Ausnutzung der Tragfähigkeit von Textilbetonbauteilen und -verstärkungsschichten. So kann es bei ungünstiger Konfiguration und Anordnung der Einzelkomponenten des Verbundbaustoffes zur Ausbildung einer Vielzahl verschiedener Verbundversagensformen kommen. Diese umfassen neben der Bildung von verbundschädigenden Delaminations- und Spaltrissen lokale Abplatzungen der Betondeckung oder einen vorzeitigen Auszug der Garne aus dem Beton. Besonders beansprucht sind in diesem Zusammenhang die bei einer Anwendung von Textilbeton erforderlichen Endverankerungs- und Stoßbereiche der textilen Bewehrungen.
Zur sicheren Ausbildung und Bemessung dieser wichtigen Detailpunkte liegen jedoch momentan noch keine umfassenden und zusammenhängenden Untersuchungen vor. Hauptziel der vorliegenden Dissertation war daher eine systematische Erforschung und Beschreibung des Tragverhaltens von Textilbeton in Endverankerungs- und Übergreifungsbereichen.
Eine funktionierende und schädigungsfreie Verbundkraftübertragung bildet die Grundlage für die sichere Lasteinleitung und -übertragung. Daher wurden im ersten Teil der Arbeit ausführliche Untersuchungen zur Charakterisierung der zwischen Bewehrungstextil und Feinbetonmatrix wirkenden Kräfte und -mechanismen durchgeführt. Nach der Entwicklung eines geeigneten Versuchsaufbaus erfolgten umfangreiche Parametervariationen zur experimentellen Überprüfung des textilspezifischen Verbundverhaltens. Den Schwerpunkt der Untersuchungen bildete die Identifikation und Bewertung der aus verschiedenen Verarbeitungsparametern der textilen Bewehrungen resultierenden Verbundeinflüsse. Die Versuchsergebnisse ermöglichen die Bestimmung der zugehörigen Verbundspannungs-Schlupf-Beziehungen (VSB) mithilfe eines erarbeiteten Modellierungsverfahrens. Die so ermittelten Verbundkennwerte bilden die Grundlage für die weiteren rechnerischen Untersuchungen.
Im zweiten Teil der Arbeit erfolgten Forschungen zum Tragverhalten von Endverankerungsbereichen. Hierbei stand der im Regelfall bemessungsrelevante Grenzzustand eines vorzeitigen Auszuges der Textilien aus der Betonmatrix im Mittelpunkt. Die Arbeiten umfassten experimentelle und theoretische Untersuchungen zur Beschreibung der Kraftübertragung. Aufbauend auf die ermittelten Verbundkennwerte wird ein unabhängiger analytischer Auswertealgorithmus zur Beschreibung des Verbundtragverhaltens in Endverankerungsbereichen dargestellt. Dieser ermöglicht eine detaillierte rechnerische Bestimmung der erforderlichen Endverankerungslängen von Textilbeton in Abhängigkeit konkreter bzw. untersuchter Bewehrungstextilien.
Den dritten Forschungsschwerpunkt bildeten Untersuchungen zum Tragverhalten von Übergreifungsstößen in Textilbetonbauteilen. Mithilfe von umfassenden experimentellen und theoretischen Analysen an unterschiedlich konfigurierten und bewehrten Textilbetonen konnten die maßgebenden Versagensmechanismen untersucht und grundlegende Vorgaben für die Bemessung und Ausführung der Übergreifungsbereiche abgeleitet werden. Die gewonnenen Erkenntnisse wurden anhand von großformatigen Bauteilversuchen mit entsprechend konstruierten Übergreifungsstößen bestätigt.
Zum Abschluss wird ein vereinfachtes Ingenieurmodell vorgestellt. Dieses erlaubt eine allgemeingültige und hinreichend genaue Bemessung der untersuchten Detailpunkte unter Beachtung der maßgebenden Grenzzustände. / The safe introduction and transmission of forces is a requirement for the workability as well as the possibility to make full use of the load bearing capacities of components and strengthening layers made of textile reinforced concrete. Accordingly, an unfavourable configuration and arrangement of the composite material’s individual components can lead to various modes of bond failure. These can result from the formation of bond damaging delamination cracks and longitudinal matrix splitting, local spalling of the concrete layer in the outer reinforcement layers or early yarn pull-out from the concrete. In this context, the areas of end anchorage and lap joints of the textile reinforcement, which cannot be avoided when using textile reinforced concrete, are particularly prone to failure.
However, no comprehensive and coherent investigations regarding the safe configuration and dimensioning of these essential details are available yet. Consequently, systematic research into textile reinforced concrete’s load-bearing behaviour in the areas of end anchorage and lap joints and the subsequent description was the main goal of this dissertation.
A working and damage-free transmission of bond force is the basis for a faultless load transmission and introduction. As a result, extensive tests concerning the characterization of the mechanisms and forces acting between reinforcing textile and fine grained concrete matrix were carried out as the first part of the investigations.
After an appropriate test setup had been developed, a great variety of parameters was applied to experimentally examine the bond behaviour specific to the textile. The determination of the influencing factors resulting from various parameters in the textile reinforcement’s processing was a focus in the research. Based on a specifically developed modelling technique, the test results could be used to calculate the corresponding bond stress-slip-relation. The bond parameters, which were determined like this, served as the basis for the following calculations.
The second part of the investigations was concerned with the load-bearing behaviour in end anchorage areas. In this case, the limit state of a yarn pull-out from the concrete matrix, which is usually essential for the dimensioning, was at the centre of attention. The investigations encompassed experimental and theoretical tests regarding the description of the force transmission. Based on the determined compound parameters, an independent analytic evaluation algorithm, which served to describe the load carrying behaviour of the bond in the end anchorage area, was presented. Through this algorithm, the detailed calculation of the required end anchorage lengths of textile reinforced concrete depending on the specific reinforcement textile was possible.
The third research focus was on tests regarding the load-bearing behaviour of lap joints in textile reinforced concrete components. With the help of comprehensive experimental and theoretical analyses of variously configured and reinforced textile reinforced concretes, the decisive failure mechanisms were examined. Furthermore, fundamental demands for the dimensioning and execution of the lap joint areas could be derived. The findings were confirmed through tests on large-sized building components with corresponding lap joints.
At the end of the investigations, a simplified engineering model is presented. This model makes a universally valid and exact dimensioning of the examined details possible while also paying attention to the decisive limit states.
|
5 |
Probabilistic Characterization of Bond Behavior at Rebar-concrete Interface in Corroded RC Structures: Experiment, Modeling, and ImplementationSoraghi, Ahmad January 2021 (has links)
No description available.
|
Page generated in 0.0776 seconds