Spelling suggestions: "subject:"bond dde poisson"" "subject:"bond dde boisson""
1 |
Sur certains aspects de la propriété RD pour des représentations sur les bords de Poisson-Furstenberg / On some aspects of property RD for Poisson-Furstenberg boundary representations.Boyer, Adrien 03 July 2014 (has links)
Nous étudions la propriété RD en terme de décroissance de coefficients matriciels de représentations unitaires. Nous nous concentrons en particulier sur des représentations provenant de l'action des groupes de Lie et de groupes discrets sur un "bord" approprié. Ces actions produisent des rerésentations unitaires à normalisation prés. Nous utilisons des techniques d'analyse harmonique et de théorie ergodique pour amorcer une nouvelle approche de la conjecture de Valette. / We study property RD in terms of decay of matrix coefficients for unitary representations. We focus our attention on unitary representations arising from action of Lie groups and discrete groups of isometries of a CAT(-1) space on their appropriate boundary. We use some techniques of harmonic analysis, and ergodic theory to start a new approach of Valette's conjecture
|
2 |
Probabilités et géométrie dans certains groupes de type finiMathéus, Frédéric 25 November 2011 (has links) (PDF)
Dans de nombreux phénomènes régis par le hasard, le résultat de l'observation provient de la combinaison aléatoire d'événements élémentaires : le gain d'un joueur au jeu de pile ou face est le résultat de parties successives, mélanger un jeu de cartes s'effectue en plusieurs battages consécutifs, l'enchevêtrement d'une molécule d'ADN dans une cellule est le produit, entre autres, de croisements successifs. Ces événements élémentaires ont la particularité d'être réversibles (gagner/perdre au pile ou face, croiser/décroiser des brins d'ADN) et l'aléa régissant leur combinaison possède une certaine indépendance (l'issue d'une partie de pile ou face n'a a priori aucune influence sur la suivante). Un modèle possible pour ces phénomènes consiste à considérer un groupe G, fini ou dénombrable, que l'on munit d'une mesure de probabilité μ. On effectue des tirages successifs d'éléments dans G avec les hypothèses suivantes : les tirages sont indépendants, et, pour chaque tirage, μ(g) est la probabilité de tirer l'élément g. Si g1, g2,...,gn est le résul- tat de n tirages, on forme le produit g1.g2. ... . gn. C'est, par définition, la position à l'instant n de la marche aléatoire sur G de loi μ, et la question est : que peut-on dire du comportement asymptotique de g1.g2. ... .gn lorsque n augmente in- définiment ? La marche aléatoire s'en va-t'elle à l'infini ? Si oui, dans quelle direction ? Et à quelle vitesse ? Mes travaux depuis 2003 sont consacrés, pour l'essentiel, à l'étude du comportement asymptotique des marches aléatoires dans trois familles de groupes infinis, non abéliens et de type fini : les produits libres de groupes finis, les groupes d'Artin diédraux, ainsi que certaines extensions des groupes libres. Ils sont le fruit de collaborations avec Jean Mairesse (CNRS, Paris VI) et François Gautero (Université de Nice). Dans le cas des produits libres de groupes finis, nous décrivons précisément la mesure harmonique pour les marches aléatoires au plus proche voisin dans ces groupes, ce qui permet de calculer la vitesse et l'entropie asymptotique. En particulier, ces quantités dépendent de façon analytique des coefficients de μ. Considérant l'inégalité fondamentale de Yves Guivarc'h entre vitesse, entropie et croissance, nous montrons que les générateurs canoniques des produits libres de groupes finis sont extrémaux au sens de Vershik. Les groupes d'Artin diédraux forment une classe de groupes d'Artin qui généralise le groupe de tresses à trois brins B3 et pour laquelle nous donnons une description précise des géodésiques. La connaissance de la vitesse de fuite des marches aléatoires au plus proche voisin dans le groupe B3 est un premier outil de mesure de la complexité asymptotique d'une tresse aléatoire. Dans ce cas, on montre que la vitesse dépend de façon lipschitzienne mais non différentiable de μ, faisant apparaître certaines transitions de phase. Enfin, en ce qui concerne les extensions du groupe libre, nous montrons que, dans certains cas (comprenant notamment les extensions cycliques) les fonctions μ-harmoniques bornées sont entièrement décrites via le bord du groupe libre sous-jacent. La preuve repose sur l'existence d'actions non triviales de ces groupes sur des arbres réels, couplée à des critères généraux sur les compactifications des groupes développés par Vadim Kaimanovich.
|
Page generated in 0.0721 seconds