• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 10
  • Tagged with
  • 32
  • 14
  • 9
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Techno-economic analysis of implementing energy-efficiency and alternative fuels in Indonesia using OSeMOSYS / Teknokonomisk analys av implementering av energieffektivitet och alternativa bränslen i Indonesien med OSeMOSYS

Gupta, Kushagra January 2020 (has links)
Indonesia’s energy demand has been growing rapidly driven by increasing population, urbanization, and rapid economic growth. With increasing energy demand, the emissions associated with the energy sector continue to increase. With the gradual increase in demand and dominant share of fossil fuels in the energy mix, implementing the energy efficiency measures is crucial for Indonesia to achieve its energy and climate goals. From the policy perspective, National Energy plan of Indonesia aims to achieve higher levels of energy efficiency to reduce the overall energy intensity. Indonesia also has commitments to reduce greenhouse gas emissions and achieve SDG targets. This report reviews the current status of energy demand and energy efficiency in Indonesia and evaluates the potential of implementing energy efficiency measures and fuel switching options to achieve future low carbon energy future. Long term energy model of Indonesia is modelled using the open-source modelling tool OSeMOSYS. Different scenarios have been developed to investigate the outcome of implementing energy efficiency and fuel switching measures in the Residential, Commercial, and Transportation sectors. The results are presented in terms of reduction in total final energy use, greenhouse gas emissions, and local air pollution. Cost-Benefit analysis of the applied measures present their financial feasibility. With the deployment of efficient appliances, up to 30% electricity savings can be achieved in the residential and commercial sector. Vehicle electrification can contribute towards reduction in annual energy use by 48% by the end of modelling period. Measures in the residential and commercial sector directly contribute towards emission reductions. Vehicle electrification does not show proportionate reduction in emissions compared to energy use reduction due to high carbon intensity of the electricity grid. However, significant reduction in local air pollutants can be achieved. Cost benefit analysis shows that deployment of efficient appliances is financially feasible with maximum 2 years of payback period. On the other hand, successful deployment of electric vehicles will require tangible support from government due to its high price premium compared to conventional vehicles. Energy efficiency measures and fuel switching also contribute substantially to achieving Sustainable Development Goal 7.3. In conclusion, this study presents a set of technically and economically feasible energy system development options for Indonesia. From the modelling perspective, this study identifies ways to implement demand side management measures in the energy supply modelling system OSeMOSYS. / Indonesiens energibehov har ökat snabbt drivet av ökande befolkning, urbanisering och snabbekonomisk tillväxt. Med ökande energibehov fortsätter utsläppen i energisektorn att öka. Medden gradvisa ökningen i efterfrågan och den dominerande andelen fossila bränslen ienergimixen är genomförandet av energieffektivitetsåtgärderna avgörande för att Indonesienska uppnå sina energi- och klimatmål. Ur politiskt perspektiv syftar Indonesiens nationella energiplan till att uppnå högre nivåer av energieffektivitet för att minska den totala energiintensiteten. Indonesien har också åtaganden att minska utsläppen av växthusgaser och uppnå SDG-mål. Denna rapport granskar den aktuella statusen för efterfrågan på energi och energieffektivitet i Indonesien och utvärderar potentialen för att genomföra energieffektivitetsåtgärder och alternativ för bränsleomkoppling för att uppnå framtida energiförbrukning med låg koldioxid. Indonesiens långsiktiga energimodell modelleras med hjälp av open-sourcemodelleringsverktyget OSeMOSYS. Olika scenarier har utvecklats för att undersöka resultatet av genomförande av energieffektivitet och bränsleomkopplingsåtgärder inom bostads-, kommersiellt och transportsektorn. Resultaten presenteras i termer av minskning av den totalaslutliga energiförbrukningen, växthusgasutsläpp och lokal luftföroreningar. Kostnadsnyttoanalys av de tillämpade åtgärderna utgör deras ekonomiska genomförbarhet. Med användning av effektiva apparater kan upp till 30% elbesparing uppnås i bostads- och affärssektorn. Fordonselektrifiering kan bidra till minskning av den årliga energiförbrukningen med 48% i slutet av modelleringsperioden. Åtgärder inom bostads- och kommersiell sektor bidrar direkt till utsläppsminskningar. Fordonselektrifiering visar inte proportionell minskning av utsläpp jämfört med energiförbrukningen på grund av hög kolintensitet i elnätet. Emellertid kan en betydande minskning av lokala luftföroreningar uppnås. Kostnads för delningsanalys visar att distribution av effektiva apparater är ekonomiskt möjlig med maximalt 2 års återbetalningsperiod. Å andra sidan kommer framgångsrik distribution av elfordon att kräva konkret stöd från regeringen på grund av dess höga prispremie jämfört med konventionella fordon. Energi effektivitetsåtgärder och bränsleomkoppling bidrar också väsentligt till att uppnå mål för hållbar utveckling 7.3. Sammanfattningsvis presenterar denna studie en uppsättning tekniska och ekonomiskt genomförbara energisystemutvecklingsalternativ för Indonesien. Från modelleringsperspektivet identifierar denna studie sätt att implementera hanteringsåtgärder på efterfrågesidan i modelleringssystemet för energiförsörjning OSeMOSYS.
32

Leveraging green hydrogen to decarbonise the aviation industry : A case study on electrofuels in Sweden / Användning av grön vätgas för att dekarbonisera flygindustrin : En fallstudie om elektrobränslen i Sverige

Bergene, Jakob, Bruchhausen, Jonathan January 2023 (has links)
For the EU to reach its 2050 climate targets the aviation industry that is highly dependent on fossil fuels needs to drastically reduce its emissions. In the decarbonisation of the aviation industry drop-in sustainable aviation fuels (SAFs) have been identified as a promising solution to abate the industry’s emissions. To increase the adoption of SAFs, The EU has announced a proposal called ReFuelEU Aviation, introducing obligated blend mandates for SAFs that airlines and fuel suppliers need to comply with, starting at 2% in 2025 going up to 70% by 2050. A subset of SAFs called electrofuels, made from green hydrogen and carbon dioxide, could become essential in the sustainability transition with an emission abatement potential of up to 95% compared to fossil jet fuel. However, there exist no large scale production of electrofuels and previous research suggests that they will be several times more expensive to produce than their fossil counterparts, highlighting that the production and adoption will be challenging. In this thesis we first study how and under which conditions electrofuel value chains can develop in Sweden and second to which extend locally-produced electrofuels may be economically feasible. The former was studied qualitatively and the latter quantitatively, which together identified challenges and opportunities for electrofuels to decarbonise the aviation industry. The qualitative analysis was researched by conducting semi-structured interviews with industry actors, researching the current policy landscape and analysing the findings from a theoretical lens of ‘complementarity formation mechanisms in technology value chains’. The quantitative analysis was researched by a techno-economic assessment of e-kerosene production in Sweden using an alkaline electrolyser, different carbon capture technologies and a Fischer Tropsch fuel synthesis. In the qualitative analysis we found, in contrast to previous research, that the incremental cost associated with adoption of electrofuels is not necessarily the greatest concern. Instead, the value chain development of electrofuels is dependent on synchronised development of the input sectors renewable energy, hydrogen production and carbon capture technologies. Industry actors may not invest in large scale electrofuel production until they have secured a supply for renewable energy. There is also a liability of limited scalability in these, affected by slow permit processes and construction of new renewable energy, risking that electrofuels are not produced sustainably and at a high cost. We also found that producing bio-electrofuels, utilising lignocellulosic biomass from e.g., forest residue, can become important for Swedish fuel production. In the quantitative analysis the results show a levelised cost of e-kerosene of 3.8-6.1 times higher than the fossil jet fuel price of April 2023, sensitive to changes in energy price and capital expenditures of electrolysers for hydrogen production. We also found that the source of carbon capture affects the price, where direct air capture (DAC) increased total costs by 32% and 25% compared to bioethanol and pulp and paper, respectively. The levelised cost yield emission abatement costs between 457-1,042 €/tonne CO2e, depending on energy scenario and emissions abatement potential. In conclusion, we have found that the production of electrofuels for aviation is contingent on low energy prices, point-source carbon capture and economies of scale in hydrogen production. This highlights that renewable energy in combination with technological developments in hydrogen and carbon production is essential to establish a sustainable value chain. This can become challenging as other industries, such as green steel, will require similar inputs for production, emphasising that the location of electrofuel plants highly impacts the business case and possibility to produce relatively sustainable and cost competitive products. / För att EU ska nå sina klimatmål för 2050 behöver flygindustrin, som är beroende av fossila bränslen, drastiskt minska sina utsläpp. I dekarboniseringen av flygindustrin har hållbara flygbränslen (SAF) identifierats som en potentiell lösning för att minska utsläppen i industrin. EU har tagit fram förslaget ReFuelEU Aviation som inför obligatoriska inblandningskrav av SAF för flygbolag och bränsleleverantörer, med start 2025 på 2% och en ökning till 70% fram till år 2050. En subkategori av SAF kallade elektrobränslen, som tillverkas av grön vätgas och koldioxid, kan bli avgörande i hållbarhetsomställningen med en potential att reducera utsläpp med upp till 95% jämfört med fossilt flygbränsle. Samtidigt finns det idag ingen storskalig produktion av elektrobränslen och forskare och branschexperter tror att produktionskostnaderna kommer att vara flera gånger dyrare än den fossila motsvarigheten, vilket antyder att produktionen av elektrobränslen kommer medföra utmaningar. I denna uppsats studerar vi först hur och under vilka förutsättningar elektrobränsle-värdekedjor kan utvecklas i Sverige, och sedan under vilka förutsättningar produktion av elektrobränslen kan vara ekonomiskt konkurrenskraftigt. Den första frågeställningen studerades kvalitativt och den andra kvantitativt, vilka tillsammans identifierade utmaningar och möjligheter för produktion och användning av elektrobränslen för att dekarbonisera flygindustrin. Den kvalitativa analysen bestod av semistrukturerade intervjuer med aktörer inom branschen och forskning kring det nuvarande policylandskapet. Dessa resultat analyserades sedan utifrån en teoretisk lins av ’komplementära formationsmekanismer i teknologiska värdekedjor’. Den kvantitativa delen analyserades genom en tekno-ekonomisk analys av e-fotogenproduktion i Sverige genom en alkalisk elektrolysör, olika tekniker för koldioxidavskiljning och bränslesyntes via Fischer-Tropsch. I den kvalitativa analysen fann vi, i motsats till tidigare forskning, att de inkrementella kostnaderna för införandet av elektrobränslen inte nödvändigtvis är det största hindret. I stället är utvecklingen av elektrobränsle-värdekedjor beroende av en synkroniserad utveckling av förnybar energi, vätgasproduktion och koldioxidavskiljningstekniker då industriella aktörer kan vara motvilliga att investera i storskalig elektrobränsleproduktion innan de har en säkrat tillgång av förnybar energi. Det finns också en risk för begränsad skalbarhet på grund av långsamma tillståndsprocesser för konstruktion av ny förnybar energi, vilket kan leda till att elektrobränslen inte produceras hållbart och till höga kostnader. Vi fann också att produktion av bio-elektrobränslen, genom att använda lignocellulistisk biomassa från exempelvis skogsrester, kan bli viktigt för den svenska bränsleproduktionen. I den kvantitativa analysen visade resultaten att kostnaden för e-fotogen är 3.8-6.1 gånger högre än den fossila motsvarigheten och att priset var känsligt mot förändringar i energipris och investeringskostnader för elektrolysören för vätgasproduktion. Vi fann också att källan till koldioxidavskiljning påverkar priset, där direktluftsavskiljning (DAC) ökade de totala kostnaderna med 32% respektive 25% jämfört med bioetanol och pappersmassa. Produktionskostnaderna för elektrobränslen indikerarar en utsläppsminskningskostnad mellan 457-1,042 €/ton CO2e, beroende på energiscenario och utsläppsminskningspotential. Slutsatsen är att produktionen av elektrobränslen för flygindustrin är beroende av låga energipriser, källa för koldioxidavskiljning och stordriftsfördelar för vätgasproduktion. Detta påvisar att förnybar energi i kombination med teknologisk utveckling inom vätgas- och koldioxidproduktion är avgörande för att etablera en välfungerande värdekedja. Detta kan bli utmanande då andra industrier, som produktionen av grönt stål, kommer att kräva liknande insatsvaror för produktion och betonar därmed vikten av den geografiska placeringen av elektrobränslefabriker för att ha möjligheten att producera hållbara och kostnadseffektiva bränslen.

Page generated in 0.0188 seconds