• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • Tagged with
  • 17
  • 17
  • 10
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Shear Forces Developed in Link Beams of Eccentric Braced Frames

Evans, John Paul 01 May 2012 (has links)
Eccentric braced frames have been a topic of research in seismic design over the past twenty years. The idea of eccentric bracing is a relatively new method used in practice to satisfy seismic design requirements. They have been proven to give reliable results in tests using simulated earthquake events, as well as provide an economical advantage over other framing methods. Two one-story eccentric braced frame models were created using computer generated finite element analysis. The example chosen for this study are discussed further. The maximum shear stress distribution in the link beam of the frame, using finite element analysis, will be investigated herein. The results of the shear stress produced gives insight to shear forces developed in the link beam of eccentric braced frames. The results of shear forces produced are compared with those calculated by structural engineers using commonly used hand calculated equations.
2

A Numerical Study On Beam Stabilty In Eccentrically Braced Frames

Yigitsoy, Gul 01 September 2010 (has links) (PDF)
A two-phase research program was undertaken numerically to assess the behavior of the beam outside of the link that is designed for overstrength of the link in eccentrically braced frames (EBFs). In the first phase, software was developed to conduct a statistical analysis of the typical cases designed according to the AISC Seismic Provisions for Structural Steel Buildings. In this analysis, it was noticed that most of the statistically analyzed cases do not satisfy the code requirement provided for overstrength factor. Furthermore, the analyses results revealed that troublesome designs are highly influenced by normalized link length and slenderness of the beam. In this phase, redistribution of forces between beam and brace after the yielding of beam was also studied and it was observed that the forces not carried by the yielded beam are taken by the brace. In second phase, a total of 91 problematic designs were analyzed on finite element program to investigate the effective parameters on the overstrength issue, and overall and local stability of the beam outside of the links. According to analysis results, it was observed that unbraced beam length and flange slenderness are responsible for the stability of the system. Based on these results, the boundary values were suggested to prevent lateral torsional buckling of the beam and local buckling of the brace connection panel separately. Moreover, the overstrength factor specified by code was found conservative for the intermediate and long links although it is fit for the short links.
3

Analytical and Experimental Study of Concentrically Braced Frames with Zipper Struts

Yang, Chuang-Sheng 20 November 2006 (has links)
This thesis investigates the performance of concentrically braced zipper frames through complementary experimental and numerical simulation approaches and proposes a design methodology for an innovative bracing scheme labeled as the suspended zipper frame. The suspended zipper frame intends to ensure that the top-story hat truss remains elastic, resulting in very ductile behavior of the structure. In the first part of the work, a three-story prototype frame was designed based on a preliminary design method. Three tests were conducted on one-third scale models of this prototype to verify the design procedure and assess the system performance under very different load histories. Comparisons of the results between analyses and experiments validated the partial-height zipper mechanism envisioned, and led to refinements of the design procedure and establishment of appropriate design details for these frames. The design and performance of this structural system are illustrated with three-, nine-, and twenty-story buildings designed for the same masses as those used in the SAC studies for the Los Angeles area. The proposed design strategy results in suspended zipper frames having more ductile behavior and higher strength than typical zipper frames. In addition, the suspended zipper frames also appear to reduce the tendency of chevron-braced frames to form soft stories and to improve seismic performance without having to use overly stiff beams. Finally, an explanation of the design philosophy as well as code language format of the design procedure is given.
4

Comparison of structural steel lateral force resisting systems for a theoretical hospital grid system

Buell, Grant January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Kimberly W. Kramer / In 2006, a research project was being carried out by architects at architecture/engineering firm Cannon Design involving an optimum bay size for a hospital. RISA computer modeling was used to explore a set of lateral force resisting system (LFRS) options for a building based on this optimum bay size and importance category. The structural material was first narrowed down to steel, and then moment frames and braced frames are examined. The LFRS was narrowed down to braced frames, discarding moment frames due to their inordinate story drift. Of the different types of braced frames, the study further narrowed the LFRS system to chevron braced frames. Then the precise arrangement of braces for a particular building size using this bay system was examined. The steel material cost of the final system was compared to a system that only included members sized for gravity loads to demonstrate the rough amount of cost that a lateral system can add to a building.
5

A Comparison of Optimized Nonlinear Time History Analysis and the Equivalent Lateral Forces Method for Brace Design

Balling, Lukas 28 August 2007 (has links)
This thesis presents the development of a design procedure for buckling-restrained braced frames (BRBF's). This procedure uses nonlinear time history analysis and a formal optimization algorithm. The time history analysis includes an elasto-plastic model for the braces. The optimization algorithm is a genetic algorithm. This procedure is referred to throughout the thesis as the "Nonlinear Time History Analysis Procedure with Optimization" (NTHO). Current design specifications for BRBF's are based on inelastic design spectra and approximate formulas for the determination of natural period. These spectra are used to obtain seismic base shear, and the distribution of equivalent lateral forces. Yielding and drift criteria are then used to determine brace areas. This design procedure is referred to throughout the thesis as the "Equivalent Lateral Force Procedure" (ELF). The thesis compares results from the NTHO and ELF procedures for a variety of BRBF's and levels of seismicity. The ELF procedure is judged against the more accurate NTHO procedure, and BRBF's are identified where the ELF procedure produces unconservative and excessively conservative designs. Since the NTHO procedure is more computationally expensive than the ELF procedure, design charts are developed for quickly sizing brace areas for a variety of BRBF's based on the NTHO procedure. Among the conclusions at the end of the thesis is the surprising result that the design charts show a near linear variation of brace area from story to story.
6

Simulation of Dynamic Impact of Self-Centering Concentrically-Braced Frames using LS-DYNA 971

Blin-Bellomi, Lucie M. 02 August 2012 (has links)
No description available.
7

Performance Based Analysis of a Steel Braced Frame Building with Buckling Restrained Braces

Burkholder, Margaux Claire 01 April 2012 (has links) (PDF)
This paper provides an assessment of the seismic performance of a code-designed buckling restrained braced frame building using the performance-based analysis procedures prescribed in ASCE 41-06. The building was designed based on the standards of the ASCE 7-05 for a typical office building located in San Francisco, CA. Nonlinear modeling parameters and acceptance criteria for buckling restrained brace components were developed to match ASCE 41-06 design standards for structural steel components, since buckling restrained braces are not currently included in ASCE 41-06. The building was evaluated using linear static, linear dynamic, nonlinear static and nonlinear dynamic analysis procedures. This study showed that the linear procedures produced more conservative results, with the building performing within the intended Life Safety limit, while the nonlinear procedures predicted that the building performed closer to the Immediate Occupancy limit for the 2/3 maximum considered earthquake hazard. These results apply to the full maximum considered earthquake hazard as well, under which the building performed within the Collapse Prevention limit in the linear analysis results and within the Life Safety limit in the nonlinear analysis results. The results of this paper will provide data for the engineering profession on the behavior of buckling restrained braced frames as well as performance based engineering as it continues to evolve.
8

ASCE 7–05 Design Rule for Relative Strength in a Tall Buckling-Restrained Braced Frame Dual System

Aukeman, Lisa J 01 March 2011 (has links) (PDF)
In mid- to high-rise structures, dual systems (DS) enable a structural designer to satisfy the stringent drift limitations of current codes without compromising ductility. Currently, ASCE 7-05 permits a variety of structural systems to be used in combination as a dual system yet the design requirements are limited to the following statement: Moment frames must be capable of resisting 25% of the seismic forces while the moment frames and braced frames or shear walls must be capable of resisting the entire seismic forces in proportion to their relative rigidities. This thesis assesses the significance of the 25% design requirement for the secondary moment frames (SMF) in dual systems with consideration of current structural engineering practice. Three 20-story buckling-restrained braced frame (BRBF) dual system structures were designed with varying relative strengths between the braced and special moment frame systems. The SMF system wa designed for 15%, 25%, and 40% of seismic demands and the BRBF system design has been adjusted accordingly based on its relative stiffness with respect to the moment frame. These structures were examined with nonlinear static and nonlinear dynamic procedures with guidance from ASCE 41-06. The drift, displacement and ductility demands, and the base shear distribution results of this study show similar responses of the three prototype structures. These results indicate a secondary moment frame designed to less than 25% of seismic demands may be adequate for consideration as a dual system regardless of the 25% rule.
9

Hybrid Steel Frames

Atlayan, Ozgur 22 April 2013 (has links)
The buildings that are designed according to the building codes generally perform well at severe performance objectives (like life safety) under high earthquake hazard levels. However, the building performance at low performance objectives (like immediate occupancy) under low earthquake hazards is uncertain. The motivation of this research is to modify the design and detailing rules to make the traditional systems perform better at multi-level hazards. This research introduces two new structural steel systems: hybrid Buckling Restrained Braced Frames (BRBF) and hybrid steel Moment Frames (MF). The "hybrid" term for the BRBF system comes from the use of different steel material including carbon steel (A36), high-performance steel (HPS) and low yield point (LYP) steel. The hybridity of the moment frames is related to the sequence in the plastification of the system which is provided by using weaker and stronger girder sections. Alternative moment frame connections incorporating the use of LYP steel plates are also investigated. The hybrid BRBF approach was evaluated on seventeen regular (standard) frames with different story heights, seismic design categories and building plans. By varying the steel areas and materials in the BRB cores, three hybrid BRBFs were developed for each regular (standard) frame and their behavior was compared against each other through pushover and incremental dynamic analyses. The benefits of the hybridity were presented using different damage measures such as story accelerations, interstory drifts, and residual displacements. Collapse performance evaluation was also provided. The performance of hybrid moment frames was investigated on a design space including forty-two moment frame archetypes. Two different hybrid combinations were implemented in the designs with different column sections and different strong column-weak beam (SC/WB) ratios. The efficiency of the hybrid moment frame in which only the girder sizes were changed to control the plastification was compared with regular moment frame designs with higher SC/WB ratios. As side studies, the effect of shallow and deep column sections and SC/WB ratios on the moment frame behavior were also investigated.   In order to provide adequate ductility in the reduced capacity bays with special detailing, alternative hybrid moment frame connections adapting the use of low strength steel were also studied. / PhD
10

Parametric Study of Friction-Damped Braced Frames with Buckling-Restrained Columns using Recommended Frame and BRC Strength Factors

Anozie, Valencia Chibuike January 2017 (has links)
No description available.

Page generated in 0.0534 seconds