• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structures aléatoires de branchement et applications en génétique des populations

Berestycki, Julien 03 December 2010 (has links) (PDF)
L'objet de ce mémoire est de présenter de façon succincte les travaux que j'ai menés et auxquels j'ai collaboré depuis la fin de ma thèse. Ces travaux sont reliés par le thème central de la structure arborescente aléatoire ou du processus de branchement.
2

Marches aléatoires avec branchement et sélection

Chen, Xinxin 12 December 2013 (has links) (PDF)
Nous considérons le mouvement brownien branchant qui est un objet mathématique modélisant l'évolution d'une population. Dans ce système, les individus se déplacent indépendamment selon des mouvement browniens et se divisent indépendamment à taux 1 en deux individus. Nous nous intéressons à la position la plus à droite (resp. à gauche) au temps s, qui est définie comme le maximum (resp. le minimum) des positions des individus vivants à ce temps-là. D'après Lalley et Sellke \cite{Lalley-Sellke1987}, chaque individu apparu dans ce système aura un descendant atteignant la position la plus à droite. Nous étudions ce phénomène quantitativement, en estimant le premier instant où chaque individu vivant à l'instant s a eu un tel descendant. Nous étudions ensuite la marche aléatoire branchante en temps discret qui est un système analogue dans lequel les marches aléatoires sont indexées par un arbre de Galton-Watson. On définit de la même façon la position la plus à droite et celle la plus à gauche à la génération n. Nous considérons la marche partant de la racine qui va à la position la plus à gauche. le chemin reliant la racine à la position la plus à gauche. Nous montrons que cette marche, convenablement renormalisée, converge en loi vers une excursion brownienne normalisée. Dans la dernière partie de cette thèse, nous nous plaçons "dans un cadre avec un critère de sélection". Etant donné un arbre régulier dont chaque individu a N enfants, nous attachons à chaque individu une variable aléatoire. Toutes les variables attachées sont i.i.d., de loi uniforme sur [0,1]. La sélection intervient de la façon suivante: un individu est conservé si le long du chemin le plus court le reliant à la racine, les variables aléatoires attachées sont croissantes; les autres individus sont éliminés du système. Nous étudions le comportement asymptotique de la population dans le processus lorsque N tend vers l'infini.
3

Branching processes for structured populations and estimators for cell division / Processus de branchement pour des populations structurées et estimateurs pour la division cellulaire

Marguet, Aline 27 November 2017 (has links)
Cette thèse porte sur l'étude probabiliste et statistique de populations sans interactions structurées par un trait. Elle est motivée par la compréhension des mécanismes de division et de vieillissement cellulaire. On modélise la dynamique de ces populations à l'aide d'un processus de Markov branchant à valeurs mesures. Chaque individu dans la population est caractérisé par un trait (l'âge, la taille, etc...) dont la dynamique au cours du temps suit un processus de Markov. Ce trait détermine le cycle de vie de chaque individu : sa durée de vie, son nombre de descendants et le trait à la naissance de ses descendants. Dans un premier temps, on s'intéresse à la question de l'échantillonnage uniforme dans la population. Nous décrivons le processus pénalisé, appelé processus auxiliaire, qui correspond au trait d'un individu "typique" dans la population en donnant son générateur infinitésimal. Dans un second temps, nous nous intéressons au comportement asymptotique de la mesure empirique associée au processus de branchement. Sous des hypothèses assurant l'ergodicité du processus auxiliaire, nous montrons que le processus auxiliaire correspond asymptotiquement au trait le long de sa lignée ancestrale d'un individu échantillonné uniformément dans la population. Enfin, à partir de données composées des traits à la naissance des individus dans l'arbre jusqu'à une génération donnée, nous proposons des estimateurs à noyau de la densité de transition de la chaine correspondant au trait le long d'une lignée ainsi que de sa mesure invariante. De plus, dans le cas d'une diffusion réfléchie sur un compact, nous estimons par maximum de vraisemblance le taux de division du processus. Nous montrons la consistance de cet estimateur ainsi que sa normalité asymptotique. L'implémentation numérique de l'estimateur est par ailleurs réalisée. / We study structured populations without interactions from a probabilistic and a statistical point of view. The underlying motivation of this work is the understanding of cell division mechanisms and of cell aging. We use the formalism of branching measure-valued Markov processes. In our model, each individual is characterized by a trait (age, size, etc...) which moves according to a Markov process. The rate of division of each individual is a function of its trait and when a branching event occurs, the trait of the descendants at birth depends on the trait of the mother and on the number of descendants. First, we study the trait of a uniformly sampled individual in the population. We explicitly describe the penalized Markov process, named auxiliary process, corresponding to the dynamic of the trait of a "typical" individual by giving its associated infinitesimal generator. Then, we study the asymptotic behavior of the empirical measure associated with the branching process. Under assumptions assuring the ergodicity of the auxiliary process, we prove that the auxiliary process asymptotically corresponds to the trait along its ancestral lineage of a uniformly sampled individual in the population. Finally, we address the problem of parameter estimation in the case of a branching process structured by a diffusion. We consider data composed of the trait at birth of all individuals in the population until a given generation. We give kernel estimators for the transition density and the invariant measure of the chain corresponding to the trait of an individual along a lineage. Moreover, in the case of a reflected diffusion on a compact set, we use maximum likelihood estimation to reconstruct the division rate. We prove consistency and asymptotic normality for this estimator. We also carry out the numerical implementation of the estimator.
4

Mouvement brownien branchant avec sélection

Maillard, Pascal 11 October 2012 (has links) (PDF)
Dans cette thèse, le mouvement brownien branchant (MBB) est un système aléatoire de particules, où celles-ci diffusent sur la droite réelle selon des mouvements browniens et branchent à taux constant en un nombre aléatoire de particules d'espérance supérieure à 1. Nous étudions deux modèles de MBB avec sélection : le MBB avec absorption à une droite espace-temps et le N -MBB, où, dès que le nombre de particules dépasse un nombre donné N , seules les N particules les plus à droite sont gardées tandis que les autres sont enlevées du système. Pour le premier modèle, nous étudions la loi du nombre de particules absorbées dans le cas où le processus s'éteint presque sûrement, en utilisant un lien entre les équations de Fisher-Kolmogorov-Petrovskii-Piskounov (FKPP) et de Briot-Bouquet. Pour le deuxième modèle, dont l'étude représente la plus grande partie de cette thèse, nous donnons des asymptotiques précises sur la position du nuage de particules quand N est grand. Plus précisément, nous montrons qu'elle converge à l'échelle de temps log³ N vers un processus de Lévy plus une dérive linéaire, tous les deux explicites, confirmant des prévisions de Brunet, Derrida, Mueller et Munier. Cette étude contribue à la compréhension de fronts du type FKPP sous l'influence de bruit. Enfin, une troisième partie montre le lien qui existe entre le MBB et des processus ponctuels stables.
5

Temps de Branchement du Mouvement Brownien Branchant Inhomogène

Turcotte, Jean-Sébastien 04 1900 (has links)
Ce mémoire étudie le comportement des particules dont la position est maximale au temps t dans la marche aléatoire branchante et le mouvement brownien branchant sur R, pour des valeurs de t grandes. Plus exactement, on regarde le comportement du maximum d’une marche aléatoire branchante dans un environnement inhomogène en temps, au sens où la loi des accroissements varie en fonction du temps. On compare avec des modèles connus ou simplifiés, en particulier le modèle i.i.d., où l’on observe des marches aléatoires indépendantes et le modèle de la marche aléatoire homogène. On s’intéresse par la suite aux corrélations entre les particules maximales d’un mouvement brownien branchant. Plus précisément, on étudie le temps de branchement entre deux particules maximales. Finalement, on applique les méthodes et les résultats des premiers chapitres afin d’étudier les corrélations dans un mouvement brownien branchant dans un environnement inhomogène. Le résultat principal du mémoire stipule qu’il y a existence de temps de branchement au centre de l’intervalle [0, t] dans le mouvement brownien branchant inhomogène, ce qui n’est pas le cas pour le mouvement brownien branchant standard. On présentera également certaines simulations numériques afin de corroborer les résultats numériques et pour établir des hypothèses pour une recherche future. / This thesis studies the behavior of particles that are maximal at time t in branching random walk and branching Brownian motion on R, for large values of t. Precisely, we look at the behavior of the maximum in a branching random walk in a time-inhomogeneous environment, where the law of the increments varies with respect to time. We compare with known or simplified models such as the model where random walks are taken to be i.i.d. and the branching random walk in a time-homogeneous environment model. We then take a look at the correlations between maximal particles in a branching brownian motion. Specifically, we look at the branching time between those maximal particles. Finally, we apply results and methods from the first chapters to study those same correlations in branching Brownian motion in a inhomogeneous environment. The thesis’ main result establishes existence of branching time at the center of the interval [0, t] for the branching Brownian motion in a inhomogeneous environment, which is not the case for standard branching brownian motion.We also present results of simulations that agree with theoretical results and help establishing new hypotheses for future research.
6

Temps de Branchement du Mouvement Brownien Branchant Inhomogène

Turcotte, Jean-Sébastien 04 1900 (has links)
Ce mémoire étudie le comportement des particules dont la position est maximale au temps t dans la marche aléatoire branchante et le mouvement brownien branchant sur R, pour des valeurs de t grandes. Plus exactement, on regarde le comportement du maximum d’une marche aléatoire branchante dans un environnement inhomogène en temps, au sens où la loi des accroissements varie en fonction du temps. On compare avec des modèles connus ou simplifiés, en particulier le modèle i.i.d., où l’on observe des marches aléatoires indépendantes et le modèle de la marche aléatoire homogène. On s’intéresse par la suite aux corrélations entre les particules maximales d’un mouvement brownien branchant. Plus précisément, on étudie le temps de branchement entre deux particules maximales. Finalement, on applique les méthodes et les résultats des premiers chapitres afin d’étudier les corrélations dans un mouvement brownien branchant dans un environnement inhomogène. Le résultat principal du mémoire stipule qu’il y a existence de temps de branchement au centre de l’intervalle [0, t] dans le mouvement brownien branchant inhomogène, ce qui n’est pas le cas pour le mouvement brownien branchant standard. On présentera également certaines simulations numériques afin de corroborer les résultats numériques et pour établir des hypothèses pour une recherche future. / This thesis studies the behavior of particles that are maximal at time t in branching random walk and branching Brownian motion on R, for large values of t. Precisely, we look at the behavior of the maximum in a branching random walk in a time-inhomogeneous environment, where the law of the increments varies with respect to time. We compare with known or simplified models such as the model where random walks are taken to be i.i.d. and the branching random walk in a time-homogeneous environment model. We then take a look at the correlations between maximal particles in a branching brownian motion. Specifically, we look at the branching time between those maximal particles. Finally, we apply results and methods from the first chapters to study those same correlations in branching Brownian motion in a inhomogeneous environment. The thesis’ main result establishes existence of branching time at the center of the interval [0, t] for the branching Brownian motion in a inhomogeneous environment, which is not the case for standard branching brownian motion.We also present results of simulations that agree with theoretical results and help establishing new hypotheses for future research.
7

Processus de branchements et graphe d'Erdős-Rényi / Branching processes and Erdős-Rényi graph

Corre, Pierre-Antoine 29 November 2017 (has links)
Le fil conducteur de cette thèse, composée de trois parties, est la notion de branchement.Le premier chapitre est consacré à l'arbre de Yule et à l'arbre binaire de recherche. Nous obtenons des résultats d'oscillations asymptotiques de l'espérance, de la variance et de la distribution de la hauteur de ces arbres, confirmant ainsi une conjecture de Drmota. Par ailleurs, l'arbre de Yule pouvant être vu comme une marche aléatoire branchante évoluant sur un réseau, nos résultats permettent de mieux comprendre ce genre de processus.Dans le second chapitre, nous étudions le nombre de particules tuées en 0 d'un mouvement brownien branchant avec dérive surcritique conditionné à s'éteindre. Nous ferons enfin apparaître une nouvelle phase de transition pour la queue de distribution de ces variables.L'objet du dernier chapitre est le graphe d'Erdős–Rényi dans le cas critique : $G(n,1/n)$. En introduisant un couplage et un changement d'échelle, nous montrerons que, lorsque $n$ augmente les composantes de ce graphe évoluent asymptotiquement selon un processus de coalescence-fragmentation qui agit sur des graphes réels. La partie coalescence sera de type multiplicatif et les fragmentations se produiront selon un processus ponctuel de Poisson sur ces objets. / This thesis is composed by three chapters and its main theme is branching processes.The first chapter is devoted to the study of the Yule tree and the binary search tree. We obtain oscillation results on the expectation, the variance and the distribution of the height of these trees and confirm a Drmota's conjecture. Moreover, the Yule tree can be seen as a particular instance of lattice branching random walk, our results thus allow a better understanding of these processes.In the second chapter, we study the number of particles killed at 0 for a Brownian motion with supercritical drift conditioned to extinction. We finally highlight a new phase transition in terms of the drift for the tail of the distributions of these variables.The main object of the last chapter is the Erdős–Rényi graph in the critical case: $G(n,1/n)$. By using coupling and scaling, we show that, when $n$ grows, the scaling process is asymptotically a coalescence-fragmentation process which acts on real graphs. The coalescent part is of multiplicative type and the fragmentations happen according a certain Poisson point process.

Page generated in 0.0657 seconds