• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 33
  • 11
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Numerical study of solidification and thermal-mechanical behaviors in a continuous caster

John Lawrence Resa (9749204) 16 December 2020 (has links)
This work includes the development of computational fluid dynamic (CFD) and finite element analysis (FEA) models to investigate fluid flow , solidification, and stress in the shell within the mold during continuous casting. The flow and solidification simulation is validated using breakout shell measurements provided by an industrial collaborator. The shell can be obtained by the solidification model and used in a FEA stress model. The stress model was validated by former research related to stress within a solidifying body presented by Koric and Thomas. The work also includes the application of these two models with a transient solidification model and a carbon percentage investigation on both solidification and deformation.
32

Single-peaked gamma-ray bursts in the Fermi GBM catalogue / Singelpeakade gammablixtar i Fermi GBM katalogen

Hintze, Henric January 2022 (has links)
Gamma-ray burst light curves are notoriously irregular, yet a significant number consists of a single fast-rising, exponentially decaying pulse. These are called single-peaked light curves. The goal of this thesis is to analyse a sample of 2710 GRBs collected by the Fermi space telescope by identifying single-peaked bursts and comparing their properties to those of the multi-peaked bursts. Furthermore, the validity of the relativistic shock breakout theory as an explanation for single-peaked, low-luminosity GRBs is investigated using a closure relation. For this investigation, the Fermi sample wascomplemented by low-luminosity GRBs observed by other instruments. A criterion for selecting single-peaked bursts was successfully developed, yielding 48% long and 79% short, single-peaked GRBs. Significant differences between the populations were found in multiple properties. In general, single-peaked GRBs appear to be weaker and more slowly varying than multi-peaked ones; however, a larger sample of GRBs with redshift measurements is needed to draw conclusions about possible intrinsic differences in energy connected to the progenitor systems. The investigation of low-luminosity GRBs’ compliance with the shock breakout closure relation showed that 64% of the low-luminosity GRBs were within a factor 5 of fulfilling the relation as opposed to only 24% of high-luminosity GRBs. It was further shown that only a small number (< 5%) of Fermi GRBs without redshift measurements could be low-luminosity shock breakout GRBs according to this theory. In conclusion, while the shock breakout closure relation does hold for a greater proportion of low-luminosity GRBs than high-luminosity GRBs, there is still a large number of low-luminosity GRBs left unexplained by this theory. / Gammablixtljuskurvor är ökänt oregelbundna men en betydande andel består av en enda snabbt stigande och exponentiellt avtagande puls. Dessa kallas singelpeakade ljuskurvor. Målet med detta examensarbete är att analysera de 2710 gammablixtar som Fermirymdteleskopet har observerat genom att identifiera singelpeakade blixtar och jämföra deras egenskaper med multipeakade blixtars. Dessutom undersöks den relativistiska shockbreakoutteorin som förklaringsmodell för singelpeakade lågluminositetsgammablixtar. I denna undersökning kompletterades fermiblixtarna med lågluminositetsblixtar från andra instrument. Ett kriterium för identifikation av singelpeakade gammablixtar utvecklades och detta resulterade i 48% långa och 70% korta, singelpeakade gammablixtar. Flertalet egenskaper uppvisade signifikanta skillnader mellan populationerna. I allmänhet verkar singelpeakade gammablixtar vara svagare och variera långsammare än multipeakade. Dock behövs en större population av gammablixtar med uppmätta rödskift för att med säkerhet kunna avgöra om singelpeakade blixtar verkligen släpper ut mindre energi. Undersökningen av huruvida lågluminositetsgammablixtar kan förklaras med shockbreakoutteorin visade att 64% av lågluminositetsblixtarna uppfyllde kravet upp till en faktor fem medan bara 24% av högluminositetsblixtarna gjorde det. Vidare visades att endast ett litet antal (<5%) av fermiblixtarna utan uppmätta rödskift skulle kunna vara lågluminositetsshockbreakoutblixtar enligt denna teori. Även om shockbreakoutteorin kan förklara en större andel av lågluminositetsblixtarna än högluminositetsblixtarna återstår ett stort antal oförklarade lågluminositetsblixtar.
33

Anchorage in Concrete Structures : Numerical and Experimental Evaluations of Load-Carrying Capacity of Cast-in-Place Headed Anchors and Post-Installed Adhesive Anchors

Nilforoush, Rasoul January 2017 (has links)
Various anchorage systems including both cast-in-place and post-installed anchors have been developed for fastening both non-structural and structural components to concrete structures. The need for increased flexibility in the design of new structures and strengthening of existing concrete structures has led to increased use of various metallic anchors in practice. Although millions of fasteners are used each year in the construction industry around the world, knowledge of the fastening technology remains poor. In a sustainable society, buildings and structures must, from time to time, be adjusted to meet new demands. Loads on structures must, in general, be increased to comply with new demands, and the structural components and the structural connections must also be upgraded. From the structural connection point of view, the adequacy of the current fastenings for the intended increased load must be determined, and inadequate fastenings must either be replaced or upgraded. The current design models are generally believed to be conservative, although the extent of this behavior is not very clear. To address these issues, the current models must be refined to allow the design of new fastenings and also the assessment of current anchorage systems in practice. The research presented in this thesis consists of numerical and experimental studies of the load-carrying capacity of anchors in concrete structures. Two different types of anchors were studied: (I) cast-in-place headed anchors, and (II) post-installed adhesive anchors. This research focused particularly on the tensile load-carrying capacity of cast-in-place headed anchors and also on the sustained tension loading performance of post-installed adhesive anchors. The overall objective of this research was to provide knowledge for the development of improved methods of designing new fastening systems and assessing the current anchorage systems in practice. For the cast-in-place headed anchors (I), the influence of various parameters including the size of anchor head, thickness of concrete member, amount of orthogonal surface reinforcement, presence of concrete cracks, concrete compressive strength, and addition of steel fibers to concrete were studied. Among these parameters, the influence of the anchor head size, member thickness, surface reinforcement, and cracked concrete was initially evaluated via numerical analysis of headed anchors at various embedment depths. Although these parameters have considerable influence on the anchorage capacity and performance, this influence is not explicitly considered by the current design models. The numerical results showed that the tensile breakout capacity of headed anchors increases with increasing member thickness and/or increasing size of the anchor head or the use of orthogonal surface reinforcement. However, their capacity decreased considerably in cracked concrete. Based on the numerical results, the current theoretical model for the tensile breakout capacity of headed anchors was extended by incorporating several modification factors that take the influence of the investigated parameters into account. In addition, a supplementary experimental study was performed to verify the numerically obtained findings and the proposed refined model. The experimental results corresponded closely to the numerical results, both in terms of failure load and failure pattern, thereby confirming the validity of the proposed model. The validity of the model was further confirmed through experimental results reported in the literature. Additional experiments were performed to determine the influence of the concrete compressive strength and the addition of steel fiber to concrete on the anchorage capacity and performance. These experiments showed that the anchorage capacity and stiffness increase considerably with increasing concrete compressive strength, but the ductility of the anchor decreases. However, the anchorage capacity and ductility increased significantly with the addition of steel fibers to the concrete mixture. The test results also revealed that the tensile breakout capacity of headed anchors in steel fiber-reinforced concrete is significantly underestimated by the current design model. The long-term performance and creep behavior of the post-installed headed anchors (II) was evaluated from the results of long-time tests on adhesive anchors under sustained loads. In this experimental study, adhesive anchors of various sizes were subjected to various sustained load levels for up to 28 years. The anchors were also exposed to several in-service conditions including indoor temperature, variations in the outdoor temperature and humidity, wetness (i.e., water on the surface of concrete), and the presence of salt (setting accelerant) additives in the concrete. Among the tested in-service conditions, variations in the outdoor temperature and humidity had the most adverse effect on the long-term sustained loading performance of the anchors. Based on the test results, recommendations were proposed for maximum sustained load levels under various conditions. The anchors tested under indoor conditions could carry sustained loads of up to 47% of their mean ultimate short-term capacities. However, compared with these anchors, the anchors tested under outdoor conditions exhibited larger creep deformation and failure occurred at sustained loads higher than 23% of their mean ultimate short-term capacities. Salt additives in concrete and wet conditions had negligible influence on the long-term performance of the anchors, although the wet condition resulted in progressive corrosion of the steel. Based on the experimental results, the suitability of the current testing and approval provisions for qualifying adhesive anchors subjected to long-term sustained tensile loads was evaluated. The evaluations revealed that the current approval provisions are not necessarily reliable for qualifying adhesive anchors for long-term sustained loading applications. Recommendations were given for modifying the current provisions to ensure safe long-term performance of adhesive anchors under sustained loads.

Page generated in 0.1713 seconds