Spelling suggestions: "subject:"brightener"" "subject:"brightened""
1 |
The effects of selected laundering treatments on fabric blend with fluorescent whitening agents and durable press finishSchwab, Ann Ingersoll January 1979 (has links)
No description available.
|
2 |
The effect of environmental factors and selected laundry treatments on dyed fabric with fluorescent whitening agentsHarris, Ronda, 1950- January 1977 (has links)
No description available.
|
3 |
The lightfastness of and substrate phototendering induced by triazinylamino stilbene fluorescent whitening agents on cottonHurd, Rebecca Pirkl. January 1986 (has links)
Call number: LD2668 .T4 1986 H866 / Master of Science / Apparel, Textiles, and Interior Design
|
4 |
Use of Escherichia coli for Microbial Source Tracking in a Mixed Use Watershed in Northern VirginiaWade, Timothy Rion 16 October 2007 (has links)
Prince William County, located in the rapidly developing Northern Virginia region, contains watersheds of mixed rural and urban/suburban uses. The project goal was to monitor and evaluate 21 stream locations, over 13 months, in the Occoquan Basin identified as impaired due to high E. coli densities. One site on each of eight streams, two sites on each of five streams, and three sites on the remaining stream were chosen for E. coli monitoring and microbial source tracking (MST). MST was performed using antibiotic resistance analysis (ARA) and fluorometric analysis. Escherichia coli was chosen as the indicator bacterium for purposes of comparison with previous project data and because a large body of evidence supports its use in freshwater systems.
This study involved the only known MST project to incorporate data from five or more consecutive years. A total of 2854 environmental isolates were collected for analysis with ARA. These isolates were classified using a known source library (KSL) that consisted of 1003 unique resistance patterns. The resistance patterns of the KSL came from known fecal sources (human, pets, livestock, wildlife) in Prince William County. The KSL included isolates from previous years but was also updated with fresh isolates. The accuracy of the KSL was assessed through the use of a challenge set. The challenge set was classified against the KSL using discriminant analysis, verified by logistic regression. The average rate of correct classification was 93% for discriminant analysis and 96% for logistic regression.
Results indicated that multiple sources of contamination were present at all sampling locations and that the major source(s) (human, pets, livestock, wildlife) of contamination were generally related to the land-use patterns and human activities at each location. Although no major or minor human signatures were found, all but two locations had either pet or livestock as the major signature, suggesting that human-related activities are playing a key role in contamination of the streams. Pets were the single most frequent major signature and wildlife was the most common minor signature.
Fluorometric analysis was used to corroborate human-derived contamination. Fluorometric analysis has the ability to detect the presence of optical brighteners, synthetic compounds added to such household items as laundry detergent, dishwashing detergent and other washing agents. Despite having an undesirably high rate of false negatives (negative fluorometry readings not supported by ARA), fluorometric analysis maintained a low rate of false positives (positive fluorometry readings not supported by ARA) and continued to demonstrate its potential for source tracking.
This project represented one of the first attempts at applying a full suite of performance criteria now recommended by the source tracking community for all MST projects. Such concepts as experimental design, toolbox approach, minimum detectable percentage, quantification, accuracy, specificity, robustness, range of applicability, and practicality were successfully incorporated. These performance criteria have in effect set a new standard to which all subsequent MST projects should adhere. / Master of Science
|
5 |
Fluorescent Brighteners in Polymerizations under Visible-light LED : Toward Versatile and High Performance Photoinitiating Systems / Agents azurants fluorescents en polymerisation sous lumière visible LED : vers des systèmes de photoinitiation versatiles et de haute performanceZuo, Xiaoling 14 December 2017 (has links)
Le développement d'un nouveau système photo-initiateur 1 photoinitiateur capable d'absorber fortement la lumière dans la région de la lumière visible et de travailler sous irradiation LED a fait des progrès gratifiants. Ici, notamment l'azurant fluorescent en tant que classe de dérivés fluorophores, a été confirmé comme un Pl efficace pour la photopolymérisation radicalaire (FRP), l'un des principaux avantages est qu'ils peuvent travailler efficacement sous l'air, même à faible intensité lumineuse. Lorsqu'ils sont incorporés dans des systèmes photoinitiateurs multicomposants (en présence de sel d'iodonium (et éventuellement N-vinylcarbazole ou amine)), les dérivés du naphtalène-benzoxazole, des triazinylstilbènes sulfonés, du stilbène-biphényl sulfoné et du coumarinme inhibent d'excellentes capacités photoamorcantes pour la FRP des acrylates sous air. De plus, ils sont particulièrement efficaces pour la formation d'un réseau de polymères interpénétrés à travers une photopolymérisation cationique 1 radicale concomitante d'un mélange époxydes 1 acrylates.De plus, la substitution d'une certaine teneur en monomère acrylate avec de l'eau augmente positivement la conversion finale des fonctions acrylate polymérisables, spécialement formulée avec les systèmes initiateurs à base d'azurants hydrophiles. En outre, une formulation aqueuse d'acrylate contenant des systèmes d'amorçage à base d'azurants a permis la synthèse d'hydrogels assistée par LED. Cette méthode de synthèse consomme moins d'énergie et les hydrogels produits ont généralement une teneur élevée en eau. Et, l'étude des photopolymérisations qui se déroulent dans les mélanges acrylate 1 eau élargit les perspectives pour le polymère vert et la chimie organique. / The development of a new photoinitiator/photoinitiatng system being capable of strongly absorbing light in the visible-light region and working under LED irradiation has made gratifying advance. Herein, notably the fluorescent brightener as one class of fluorophore derivetives, has been confirmed as an efficient Pl for free radical photopolymerization (FRP), one of the major advantages is thalthey could efficiently work under air even exposure to a low LED light intensity. When incorporated into multicomponent photoinitiating systems (in the presence of iodonium salt (and optionally N-vinyl carbazole or amine)), the derivatives of naphthalene benzoxazole, sulfonated triazinylstilbenes, sulfonated stilbene-biphenyl and coumarinmexhibit quite excellent photoinitiating abilities for FRP of acrylates under air. Moreover, they are particularly efficient for the formation of interpenetrated polymer network through a concomitant cationic/radical photopolymerization of epoxides/acrylates blend.Additionally, substitution of a certain content of acrylate monomer with water is found to positively increase the final conversion of polymerizable acrylate functions, especially formulated with the hydrophilic brighteners-based initiating systems. Besides, an aqueous acrylate formulation containing brighteners-based initiating systems enabled the LED-assisted synthesis of hydrogels. This synthetic method is less energy-intensive and the hydrogels produced are typically of high water content. And, the investigation of photopolymerizations thal proceed in acrvlate/water blends broadens the perspectives for qreen polvmer and organic chemistry.
|
Page generated in 0.0388 seconds