• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 20
  • 12
  • 12
  • 11
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Examination of the role of envelope directed antibodies on co-receptor usage in HIV-1B infection

Registre, Ludy 12 June 2018 (has links)
HIV-1 primarily utilizes the CCR5 receptor as a co-receptor, but over time, viruses can evolve to use the CXCR4 protein. Changes in the viral envelope V3 loop mediate this switch. The emergence of CXCR4-utilizing viruses has been presumed to occur as a consequence of decreased humoral immunity. We show that exclusively CXCR4-using (X4) viruses contain a 2 to 3 amino acid insertion in the V3 loop. Structural modeling revealed that this insertion caused a protrusion in the V3 loop, which impacts CCR5 receptor interaction. These genotypic and structural motifs affected neutralization susceptibility because X4, as compared to co-circulating CCR5-utilizing (R5) viruses, were less neutralization sensitive to autologous contemporaneous and heterologous plasma. Individuals with co-circulating X4 and R5, as compared to those with only R5, viruses had similar neutralization breadth and potency indicating that the emergence of X4 viruses is not associated with decreased humoral immunity. These results suggest that X4 viruses are neutralization escape variants and arise due to humoral selective pressure. This work has implications for future antibody-based therapeutics. Along with providing a framework for developing an HIV-1 vaccine, broadly neutralizing antibodies (bnAbs) are also being investigated as a potential therapeutic. BnAbs target a limited number of conserved HIV-1 envelope structures, including glycans in and around the V1/V2 and V3 domains. Along with the V3 loop, changes in V1/V2 are also known to impact co-receptor usage. We show that viruses that exclusively use the CXCR4 co-receptor, as compared to variants that only utilize CCR5, were less neutralization sensitive to V1/V2 and V3 directed bnAbs. In contrast, R5 and X4 viruses did not demonstrate neutralization differences to bnAbs that target non-V1/V2 and V3 envelope regions, such as the CD4 binding site and the membrane proximal external region. Structural modeling revealed that the predicted orientation of the V1/V2 loop among diverse HIV-1 variants predicts susceptibility to V3 loop directed bnAbs. In aggregate, our results suggest that viruses with different co-receptor usage have differing bnAb susceptibility. Furthermore, structural modeling may be used as a tool to predict neutralization susceptibility to bnAbs against regions associated with co-receptor usage. / 2020-06-12T00:00:00Z
12

Development of an OMV-based prophylactic vaccine against HPV: a Pan-HPV vaccine for cancer prevention

Tamburini, Silvia 04 December 2023 (has links)
Human Papilloma Viruses (HPVs) are a large family of viruses with a capsid constituted by the L1 and L2 proteins, which bind to receptors of the basal epithelial cells, thus promoting virus entry. The majority of sexually active people become exposed to HPV, which is the most common cause of cervical cancer affecting more than 600.000 women every year. Moreover, every year more than 13.000 new cases of HPV-related cancers, including anal, penile and head and neck cancers, are diagnosed in men. Three vaccines are available based on the L1 capsid protein, which self-assembles and forms virus-like particles (VLPs) when expressed in yeast and insect cells. Although very effective, these vaccines are HPV type-restricted, and their costs limit broad vaccination campaigns, especially in low- and middle- income countries. Recently, vaccine candidates based on the conserved L2 epitope from serotypes 16, 18, 31, 33, 35, 6, 51 and 59 were shown to elicit broadly neutralizing anti-HPV antibodies, reaching a protection around 90% against all the HPV serotypes. During my research activity, we have tested whether E. coli Outer Membrane Vesicles (OMVs) could be successfully decorated with L2 polytopes and whether the engineered OMVs could induce neutralizing antibodies. OMVs represent an attractive vaccine platform for their intrinsic adjuvanticity and their low production costs. We show that strings of L2 epitopes could be efficiently expressed on the surface of the OMVs and a polypeptide constituted by the L2 epitopes from serotypes 18, 33, 35 and 59 provided broad cross-protective activity against a large panel of HPV serotypes as judged by the in vitro pseudovirus neutralization assay. In order to better characterize the vesicle and in perspective of future clinical studies of our HPV candidate vaccine, we also worked on the setting-up of a simple and reproducible production process at laboratory scale ready to be transferred at industrial level.Moreover, we focused our attention on the strategy used for the engineering of the OMVs with the L2 epitopes and in particular on the carrier used for the delivery of the fusion construct in the surface of the vesicle. More in detail, since part of the carrier is a human cancer epitope, we tested whether a similar scaffold, with less homologies to the human gene could maintain the same properties in terms of: i) expression level of the fused epitopes in the OMVs, ii) localization on the surface of the vesicle and iii) 9 immunogenicity and efficiency to stimulate the immune system in order to produce anti L2 antibodies. Considering all the results described in this work combined with the points of strength of the OMV-based vaccine platform, as the simplicity of the production process, the yields of vaccine doses and the low cost/dose, our data provide a very promising prototype of universal anti-HPV vaccine.
13

Development of Real-Time PCR Based Methods for Detection of Viruses and Virus Antibodies

Elfaitouri, Amal January 2006 (has links)
Quantitative real-time PCR (QPCR) technology has been very useful for diagnosis of viral diseases. QPCR has recently reached a level of sensitivity, simplicity, and reproducibility which allows a large number of samples to be screened rapidly, make it a suitable tool for the clinical virology diagnostics. In this thesis, broadly targeted and degenerated quantitative QPCR assays were used. A somewhat novel single-tube real-time reverse transcription-polymerase chain reaction (QRT-PCR), with takes advantage of ability of rTth DNA polymerase to reverse transcribe RNA in the presence of Mn2+ at elevated temperatures and includes protection against amplimer contamination by using thermolabile UNG, was developed. A new technique for diagnostic of recent viral infection by detection of viral immunoglobulin M (IgM) was also developed. In the first paper, a sensitive single-tube QRT-PCR for detection of enteroviral RNA in patients with aseptic meningitis was presented. In the second paper, a single-serum-dilution real-time PCR-based PIA (PCR-enhanced immunoassay), called quantitative PIA (QPIA), to detect enterovirus IgM for diagnosis of EV infection in patients with aseptic meningitis, was also developed. In the third paper, a broadly targeted, simple, single tube degenerated quantitative QPCR technique for detection of JCV, BKV and SV40 DNA was developed. A conserved region of the VP2 gene of JCV, BKV and SV40 was targeted. A false positive result due to contamination with commonly used SV40 T-antigen plasmids was therefore avoided. In manuscript four, the QPIA assay provide a rational strategy for detection of EV IgM, allows the use of viral antigens isolate from newly diagnosed Type 1 diabetes patients (T1D-EV-QPIA) to measured IgM against diabetogenic viruses in serum from newly diagnosed T1D children, siblings, and healthy children. To conclude, novel broadly targeted real-time PCR methods for diagnosis of entero- and polyoma viral infections were developed.
14

Targeting the Highly Conserved Sequences in Influenza A Virus

Hashem, Anwar 23 April 2013 (has links)
All challenges associated with influenza A viruses including antigenic variation in hemagglutinin (HA) and neuraminidase (NA), the evolving drug resistance and the drawbacks of current vaccines hinder our ability to control this constant threat. Furthermore, gene reassortment as well as the direct transmission of highly pathogenic avian viruses to humans can result in an occasional emergence of novel influenza strains with devastating pandemic potential. Therefore, it is crucial to investigate alternative approaches to better control these viruses and to develop new prophylactic and treatment options. Targeting highly conserved epitopes or antigens among the different subtypes of influenza A virus could offer protection against broad range of influenza viruses, including emerging strains. In my research, I have investigated the potential of broadly neutralizing antibodies against HA and conducted mechanistic study of a prototype vaccine based on the highly conserved nucleoprotein (NP). We recently found that the 14 amino acids of the amino-terminus of the fusion peptide of influenza HA2 subunit is the only universally conserved sequence in all HA subtypes of influenza A and the two lineages of influenza B viruses. Here, I show that universal antibodies targeting this linear sequence in the viral HA (Uni-1 antibodies) can cross-neutralize multiple subtypes of influenza A virus by inhibiting the pH-dependant fusion of viral and cellular membranes. It is noted that the influenza NP is a highly conserved antigen and has the potential to induce heterosubtypic immunity against divergent subtypes of influenza A virus. However, NP-based vaccination only affords weak protective immunity compared to HA. This is mostly due to the non-sterilizing immunity induced by NP. Using CD40 ligand (CD40L), a key regulator of the immune system, as both a targeting ligand and a molecular adjuvant, I show that single immunization with recombinant adenovirus carrying a fused gene encoding the secreted NP-CD40L fusion protein provided robust and long-lasting protection against influenza in normal mice. It enhanced both B-cell and T-cell responses and augmented the role of both NP-specific antibodies and CTLs in protection. Importantly, it afforded effective protection in CD40L and CD4 deficient mice, confirming that the induced protection is CD40L-mediated and CD4+ T cell-independent. The rapid evolution of the influenza A viruses necessitates the development of new alternatives to contain this medically important pathogen. The results of these studies could significantly contribute to future vaccine development and avert the necessity of yearly vaccine updates.
15

Targeting the Highly Conserved Sequences in Influenza A Virus

Hashem, Anwar January 2013 (has links)
All challenges associated with influenza A viruses including antigenic variation in hemagglutinin (HA) and neuraminidase (NA), the evolving drug resistance and the drawbacks of current vaccines hinder our ability to control this constant threat. Furthermore, gene reassortment as well as the direct transmission of highly pathogenic avian viruses to humans can result in an occasional emergence of novel influenza strains with devastating pandemic potential. Therefore, it is crucial to investigate alternative approaches to better control these viruses and to develop new prophylactic and treatment options. Targeting highly conserved epitopes or antigens among the different subtypes of influenza A virus could offer protection against broad range of influenza viruses, including emerging strains. In my research, I have investigated the potential of broadly neutralizing antibodies against HA and conducted mechanistic study of a prototype vaccine based on the highly conserved nucleoprotein (NP). We recently found that the 14 amino acids of the amino-terminus of the fusion peptide of influenza HA2 subunit is the only universally conserved sequence in all HA subtypes of influenza A and the two lineages of influenza B viruses. Here, I show that universal antibodies targeting this linear sequence in the viral HA (Uni-1 antibodies) can cross-neutralize multiple subtypes of influenza A virus by inhibiting the pH-dependant fusion of viral and cellular membranes. It is noted that the influenza NP is a highly conserved antigen and has the potential to induce heterosubtypic immunity against divergent subtypes of influenza A virus. However, NP-based vaccination only affords weak protective immunity compared to HA. This is mostly due to the non-sterilizing immunity induced by NP. Using CD40 ligand (CD40L), a key regulator of the immune system, as both a targeting ligand and a molecular adjuvant, I show that single immunization with recombinant adenovirus carrying a fused gene encoding the secreted NP-CD40L fusion protein provided robust and long-lasting protection against influenza in normal mice. It enhanced both B-cell and T-cell responses and augmented the role of both NP-specific antibodies and CTLs in protection. Importantly, it afforded effective protection in CD40L and CD4 deficient mice, confirming that the induced protection is CD40L-mediated and CD4+ T cell-independent. The rapid evolution of the influenza A viruses necessitates the development of new alternatives to contain this medically important pathogen. The results of these studies could significantly contribute to future vaccine development and avert the necessity of yearly vaccine updates.
16

Coévolution entre les glycoprotéines d'enveloppe du VIH et les anticorps neutralisants à large spectre ciblant la région du glycane N332 / Coevolution of the HIV envelope glycoproteins and broadly neutralizing antibodies targeting the N332 glycan region

Rousset, Claire 17 December 2018 (has links)
Le VIH est la cause de la pandémie de SIDA depuis les années 1980. Avec plus d’un million de nouvelles infections chaque année, un vaccin prophylactique est indispensable pour bloquer de façon définitive la propagation du virus. Parmi les stratégies vaccinales, l’induction d’anticorps neutralisants à large spectre est une des plus prometteuses, car ceux-ci pourraient protéger contre l’infection par la grande diversité génétique des souches de VIH circulantes dans le monde. A ce jour, aucun immunogène n’a permis l’induction de tels anticorps, mais ils ont été isolés à partir de personnes infectées par le VIH. En effet, une faible fraction d’individus infectés développe des anticorps neutralisants à large spectre qui ciblent des régions vulnérables et conservées de la glycoprotéine d’enveloppe. La région du patch riche en mannose, centrée autour du glycane en position N332 de la gp120, est la plus fréquemment ciblée, et est à cet égard attractive d’un point de vue vaccinal.Afin de mieux comprendre comment se développent les anticorps ciblant le patch riche en mannose, nous avons étudié un donneur sélectionné de la cohorte du Protocole C de l’International AIDS Vaccine Initiative, et ayant une activité neutralisante sérique exceptionnelle. Nous avons isolé, à partir des cellules sanguines de cet individu, deux lignées d’anticorps ciblant la région N332, que nous avons caractérisées pour leur activité neutralisante et dont nous avons cartographié l’épitope. Nous avons également cartographié le paratope d’une lignée d’anticorps issue d’un autre donneur du Protocole C ciblant également la région N332. Nos résultats font apparaître la diversité de solutions adoptées pour atteindre une neutralisation à large spectre contre cette région. Les études de lignées, telles que nous l’avons entrepris, permettent d’appréhender comment la coévolution anticorps-virus conduit à la sélection d’anticorps neutralisants à large spectre. Le but ultime est d’utiliser les connaissances ainsi générées, pour mettre au point des immunogènes et des protocoles d’immunisations, visant à induire des lignées d’anticorps spécifiques et à conduire leur évolution vers la neutralisation à large spectre. / HIV has been the cause of the AIDS pandemic since the 1980s. With over a million new infections each year, a prophylactic vaccine is needed to stop the virus spread. Among vaccine strategies, the induction of broadly neutralizing antibodies is one of the most promising, as they could protect against infection by the huge genetic diversity of circulating HIV strains. To date, no immunogen has induced such antibodies, but they have been isolated from HIV infected people. Indeed, a small fraction of infected individuals eventually develops broadly neutralizing antibodies that target vulnerable and conserved sites of the envelope glycoprotein. The region of the high-mannose patch, centred around a glycan at position N332 of gp120, is the most frequently targeted, and is therefore attractive from a vaccination standpoint.In order to better understand how antibodies targeting the high-mannose patch develop, we studied a donor selected from the International AIDS Vaccine Initiative Protocol C cohort with exceptional serum neutralizing activity. We isolated two antibody lineages targeting the N332 region from this individual's blood cells, which we characterized for their neutralizing activity and mapped their epitope. We also mapped the paratope of an antibody lineage from another Protocol C donor, also targeting the N332 region. Our results show the great diversity of solutions to achieve broad neutralization against this region. Lineage studies, as we have undertaken, provide an understanding of how antibody-virus coevolution leads to the selection of broadly neutralizing antibodies. The ultimate goal is to use this knowledge to develop immunogens and immunization protocols, to induce specific antibody lineage and drive their evolution towards broad neutralization.
17

Proteiny mimikující epitopy široce neutralizujících protilátek proti viru HIV-1 / Proteins mimicking epitopes of broadly neutralizing HIV-1 antibodies

Zosinčuková, Tereza January 2021 (has links)
HIV-1 is a dangerous retrovirus which represents one of the world's leading health problems. HIV-1 infection is incurable and without proper treatment by antiretroviral therapy it leads to death within several years. Despite intensive research, no HIV vaccine is currently available. This thesis presents a new and unique approach which has not been used for vaccine development yet. The promising strategy is based on small binding proteins that can elicit broadly neutralizing HIV-1 antibodies by mimicking their epitopes. The aim of this project was to select and characterize small binding proteins that can successfully mimic the surface of viral envelope glycoproteins that is recognized by the broadly neutralizing HIV-1 antibodies PGT121 and PGT126. Proteins were selected from a highly complex combinatorial protein library derived from a new type of scaffold called Myomedin. Firstly, the extent of the protein library was narrowed down using the ribosome display. Then the direct sandwich ELISA screening was applied to select scaffold variants that interact with the target antibodies. In total over 200 variants were tested and several promising candidates were found. These Myomedin variants were purified, biochemically and biophysically characterised and the best ones were used to immunize mice....
18

Modulation of HIV-specific T cell responses during standard antiretroviral treatment and immunotherapy

Niessl, Julia 05 1900 (has links)
Seule une minorité des individus infectés par le virus de l’immunodéficience humaine (VIH) développe une réponse immunitaire capable de contrôler le virus. Chez la plupart des individus, on observe un échappement virologique et un épuisement des lymphocytes T CD8+ spécifiques du VIH. L’infection chronique non-traitée altère également les lymphocytes T CD4+ spécifiques du VIH caractérisé par l’expression accrue des récepteurs co-inhibiteurs et une signature des cellules auxiliaires T folliculaires (Tfh). La thérapie antirétrovirale (TAR) est très efficace pour supprimer durablement la charge virale dans le plasma. Néanmoins, elle ne permet pas une éradication complète du VIH car le virus persiste, intégré dans le génome des cellules réservoirs, desquelles le virus réapparaît lors de l’interruption de la thérapie. Cela démontre que l'immunité adaptive spécifiques du VIH n'est pas restaurée. Les anticorps neutralisants à large spectre (bNAbs) représentent une alternative potentielle à la TAR. En plus de la neutralisation du virus – et contrairement à la TAR – les bNAbs ne limitent pas la disponibilité de l'antigène et peuvent engager le système immunitaire. L'administration de bNAbs à des macaques rhésus induit des réponses immunitaires adaptatives associées à un contrôle prolongé de la virémie, mais cela n’a pas été établi chez l’Homme. Dans cette thèse, nous avons donc exploré la modulation des réponses des lymphocytes T spécifiques du VIH lors d'une TAR standard et d’une immunothérapie utilisant des bNAbs. Dans un premier objectif nous avons analysé la modulation persistante des réponses des lymphocytes T CD4+ spécifiques du VIH chez les individus sous TAR. Nous avons pu démontrer l'expansion persistante des Tfh spécifiques au VIH avec des caractéristiques phénotypiques et fonctionnelles les distinguant des Tfh spécifiques d’antigènes viraux comparatifs (cytomégalovirus, virus de l’hépatite B). Ces caractéristiques ont été induites au cours de l’infection chronique non-traitée, persistaient pendant la TAR et étaient associées au réservoir du VIH compétent pour la traduction. Ces données suggèrent qu’une stimulation antigénique persistante, malgré une TAR efficace, maintient des modifications immunologiques notamment au niveau des Tfh. Dans un second objectif, nous avons caractérisé les réponses T spécifiques du VIH à la suite d’un traitement utilisant des bNAbs et une interruption structurée de la TAR (IST). Des individus inclus dans une étude clinique de phase Ib ont reçu une perfusion d’une combinaison des bNAbs 10-1074 et 3BNC117 et ont démontré une suppression virale prolongée après l’IST. Chez ces participants, nous avons observé une augmentation des réponses immunitaires des lymphocytes T CD8+ et CD4+ spécifiques du VIH due à l'expansion des réponses immunitaires préexistantes et au développement de réponses ciblant de nouveaux épitopes. Cela suggère que la combinaison d’un traitement par bNAbs avec l’IST est associée au maintien de la charge virale plasmatique indétectable et à une intensification de la réponse immunitaire des lymphocytes T spécifiques du VIH. Nos travaux permettent une meilleure compréhension des réponses des lymphocytes T spécifiques du VIH au cours de la TAR et lors d’une immunothérapie. Ils peuvent contribuer au développement de stratégies thérapeutiques plus efficaces visant à contrôler la réplication virale sans la TAR. / Only a small fraction of individuals infected with the human immunodeficiency virus (HIV) develops effective immune responses able to control the virus. In most individuals, the virus escapes the antiviral immune response and HIV-specific CD8+ T cell responses become exhausted. Untreated progressive HIV infection also leads to alterations in HIV-specific CD4+ T cells. This includes increased expression of co-inhibitory receptors and skewing towards a T follicular helper cell (Tfh) signature. Antiretroviral therapy (ART) is highly effective in controlling the HIV viral load at undetectable levels in the plasma. However, ART does not represent a cure as the virus integrates into the genome of infected cells from where the virus rebounds once ART is stopped. This demonstrates that the HIV-specific T cell immunity is not restored. However, the changes that are introduced during progressive infection and that are maintained after viral suppression with ART are poorly known. Broadly neutralizing antibodies (bNAbs) represent a potential alternative to ART. In addition to virus neutralization and unlike ART, bNAbs to do not limit HIV antigen availability and can engage the immune system. bNAb administration elicited adaptive immune responses that were associated with long-lasting viral control in a simian animal model but this has not been established in HIV-infected individuals. In this thesis, we therefore proceeded to study the modulation of HIV-specific T cell responses during standard ART and after an immunotherapeutic intervention using bNAbs. The first objective was to better understand persistent modulation of HIV-specific CD4+ T cell responses in ART-treated individuals. Our results demonstrated the persistent expansion of HIV-specific Tfh cell responses with multiple phenotypic and functional features that differed from Tfh cells specific for comparative viral antigens (cytomegalovirus, hepatitis B virus). These features were induced during chronic untreated HIV infection, persisted during ART and correlated with the translation-competent HIV reservoir. This suggests that persistent HIV antigen expression, despite effective ART, maintains these altered immunological features specifically for Tfh responses. For the second objective, we characterized changes in the HIV-specific CD8+ and CD4+ T cell immunity after bNAb treatment and analytical treatment interruption (ATI). For this, we used samples obtained from participants enrolled in a clinical phase Ib study that received combined infusion of bNAbs 10-1074 and 3BNC117 and demonstrated prolonged viral suppression after ATI. In these individuals, we detected an increase of HIV-specific CD8+ and CD4+ T cell responses during ART interruption when compared to baseline. Increased T cell responses were due to both expansion of pre-existing responses and the emergence of responses to new epitopes. In contrast, HIV-specific T cell responses remained unchanged in ART-treated individuals who did not receive bNAb infusions. This suggests that bNAb treatment and ATI is associated with increased HIV-specific T cell immunity while viral suppression is maintained. Together our results contribute to a better understanding of HIV-specific T cell responses during ART and immunotherapy treatment. Our findings may help to develop more effective HIV treatment strategies to improve the host’s immune system so that HIV can be controlled without the need for ART.
19

Evaluation of an Adeno-associated virus-vector based broadly reactive influenza vaccine

Demminger, Daniel 28 May 2019 (has links)
Influenza Viren stellen eine große Bedrohung der öffentlichen Gesundheit dar. Die saisonale Grippeschutzimpfung induziert Antikörper gegen den Kopfbereich des viralen Oberflächenproteins Hämagglutinin (HA), in dem verstärkt Antigendrift auftritt. Dadurch wird die Effektivität der saisonalen Grippeimpfung auf den Impfstamm beschränkt und es besteht kein ausreichender Schutz gegen virale Driftvarianten. Eine universellere Grippeimpfung wird dringend benötigt. Die Entdeckung breit reaktiver Antikörper gegen den konservierten HA-Stammbereich hat die Erforschung neuartiger Impfstrategien vorangetrieben. Mit Chimären oder Headless HA kann eine Fokussierung der Immunantwort auf immunsubdominante Bereiche im HA-Stammbereich erzielt werden. Auch innovative Impfstoffplattformen wie Adeno-assoziierte Virus (AAV)-Vektoren bergen ein immenses Potenzial, da sie zum einen für die Verwendung im Menschen zugelassen sind und zum anderen die Immunogenität des Antigens positiv beeinflusst. Die Immunisierung mit AAV-Vektoren, die wildtypisches HA, Chimäre HA oder Nukleoprotein exprimieren, führte in dieser Arbeit in Mäusen zur Induktion breit reaktiver Antikörper, nicht aber die Immunisierung mit AAV-Headless HA oder inaktiviertem Grippeimpfstoff. Die AAV-Vektor Impfstoffe führten zur robusten Induktion Fc-Gamma-Rezeptor-aktivierender Antikörper, die beispielsweise Antikörper-vermittelte zelluläre Zytotoxizität auslösen können. Nicht nur die Impfung mit AAV-Chimären HA, sondern auch mit AAV-wildtypischem HA induzierte Antikörper gegen den HA-Stammbereich. Somit kann anscheinend allein durch eine AAV-Vektor vermittelte Expression des Antigens die Immundominanz des HA-Kopfbereiches abgemildert werden. Abschließend konnte zum ersten Mal die Schutzwirkung einer AAV-Vektor Immunisierung gegen HA im Frettchen demonstriert werden. Die in dieser Arbeit beschriebenen Ergebnisse zeigen somit das große Potenzial von AAV-Vektoren als Impfvehikel für eine breit reaktive Grippeschutzimpfung auf. / Influenza viruses represent a severe threat to public health. A seasonal vaccine is available, which readily leads to the induction of antibodies against the head domain of the viral surface protein hemagglutinin (HA), which is prone to antigenic drift. Thus, seasonal vaccination induces only strain specific protection, while it is not effective against drifted virus strains. Hence, there is an urgent need for a universal influenza vaccine. The discovery of broadly reactive antibodies against the highly conserved HA-stalk domain has prompted great interest into research on vaccination strategies to induce broadly protective HA antibodies. Chimeric and headless HA have shown promising results with respect to re-focusing immunity towards immunosubdominant epitopes in the HA-stalk to induce protective HA-stalk antibodies. Also, innovative vaccine delivery platforms such as Adeno-associated virus (AAV)-vectors offer an attractive developmental perspective. AAV-vectors are licensed for use in humans and the AAV-vectored antigen expression positively influences its immunogenicity. In this thesis, immunization with AAV-vectors expressing wildtype HA, chimeric HA or nucleoprotein induced broad protection in mice, but not vaccination with AAV-vectors expressing headless HA or an inactivated influenza vaccine. Protection was associated with the ability of the AAV-vectored vaccines to induce Fc-gamma-receptor-activating antibodies, which might activate antibody-dependent cellular cytotoxicity. Not only chimeric HA but also wildtype HA induced antibodies against the HA-stalk, suggesting that AAV-vectored antigen expression can mitigate the immunodominance of virus strain-specific epitopes in the HA-head. Importantly, for the first time a protective effect AAV-vectored immunization towards HA could be shown in ferrets. Thus, results described in this thesis suggest a large potential for the development of AAV-vectors as carriers for a broadly protective influenza vaccine.
20

Substituição processual sindical

Pimenta, Adriana Campos de Souza Freire 01 July 2010 (has links)
Made available in DSpace on 2016-03-15T19:33:39Z (GMT). No. of bitstreams: 1 BDTD - trabalhos retidos.docx: 11621 bytes, checksum: 0452b8296967440b491d0b515ed6814d (MD5) Previous issue date: 2010-07-01 / In Brazil, through social rights were recognized, in parallel, the civil and political rights. Even at authoritarian times, social rights have been formally recognized, given that the Federal Constitution of 1988 gave them enormous attention. However, realization of social rights requires, beyond the state action, the commitment of workers and their unions, occupying Article 8., III CF/88 position of prominence in this particular, by allowing the union, as a procedural substitute, to file lawsuits in defense of collective rights (especially of a certain workers class) and homogeneous individual rights of its members. This ensures isonomic access to justice to the members of the class (especially professional), and also decrease the excessive amount of individual claims and increase the number of workers protected. Finally, the most frequent activities of the union as a procedural substitute for workers, beyond strengthening the ties between them, will reduce the low rate of spontaneous compliance of the constitutional and legal norms which enshrine social rights by employers, also reducing, as a result, judicial cases and relieving the Labor Courts. / No Brasil, através dos direitos sociais, foram consagrados, de forma paralela, os direitos civis e políticos. Mesmo em períodos autoritários, os direitos sociais foram reconhecidos formalmente, sendo certo que a Constituição Federal de 1988 deu a eles enorme destaque. Contudo, a concretização dos direitos sociais, além de prestações do próprio Estado, requer o empenho dos trabalhadores e de seus sindicatos, ocupando o artigo 8º., III da CF/88, neste particular, posição de destaque, ao possibilitar que o sindicato, na condição de substituto processual, ajuíze ações em defesa dos direitos coletivos (da categoria profissional, enquanto tal) e dos direitos individuais homogêneos de seus membros. Isso garante aos integrantes da categoria (notadamente profissional) isonomia no acesso à justiça, além de diminuir a quantidade excessiva de reclamações individuais e aumentar o número de trabalhadores tutelados. Por fim, a atuação mais freqüente do sindicato como substituto processual dos trabalhadores, além de fortalecer os laços entre eles, aumentará o baixo índice de cumprimento espontâneo pelos empregadores das normas constitucionais e legais que consagram os direitos sociais, reduzindo também, via de conseqüência, os processos judiciais e desafogando a Justiça do Trabalho.

Page generated in 0.0442 seconds