• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 14
  • 6
  • 6
  • 6
  • 1
  • 1
  • Tagged with
  • 94
  • 94
  • 92
  • 25
  • 20
  • 19
  • 17
  • 16
  • 15
  • 15
  • 14
  • 11
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Genetic Analysis of Fat Metabolism in Domestic Pigs and their Wild Ancestor

Berg, Frida January 2006 (has links)
<p>The domestication of the pig began about 9 000 years ago and many of the existing domestic breeds have been selected for phenotypic traits like lean meat and fast growth. Domestic pigs are phenotypically very different from the ancestral wild boar that has adapted to survive in their natural environment. Because of their divergence, crosses between domestic pigs and wild boars are suitable for constructing genetic maps and Quantitative trait locus (QTL) analyses. A cross between the Large White and the European wild boar was thus initiated in the late 1980s. A major QTL for fat deposition and growth, denoted <i>FAT1</i>, was found on chromosome 4. The aim of this thesis was to further characterise the <i>FAT1</i> locus and to identify the causative gene(s) and mutation(s). We have identified new markers and constructed a high-resolution linkage and RH map of the <i>FAT1</i> QTL interval. We also performed comparative mapping to the human genome and showed that the pig chromosome 4 is homologous to human chromosomes 1 and 8. The gene order is very well conserved between the two species. In parallel we have narrowed down the <i>FAT1</i> QTL interval by repeated backcrossing to the domestic Large White breed for six generations. The QTL could be confirmed for fatness but not for growth. Furthermore, the data strongly suggested that there might be more than one gene underlying the <i>FAT1</i> QTL. Depending on which hypothesis to consider, the one- or two-loci model, the <i>FAT1</i> interval can be reduced to 3,3 or 20 centiMorgan (cM), respectively, based on the backcross experiments. In the last study we confirm the two-loci model with one locus primarily effecting abdominal fat and another locus primarily effecting subcutaneous fat. We have identified a missense mutation in the <i>RXRG</i> gene which is in strong association with the abdominal fat QTL and the mutation is a potential candidate for that locus.</p><p>Brown adipose tissue (BAT) is a specific type of fat essential for non-shivering thermogenesis in mammals. Piglets appear to lack BAT and rely on shivering as the main mechanism for thermoregulation. Uncoupling protein 1 (<i>UCP1</i>) gene is exclusively expressed in BAT and its physiological role is to generate heat by uncoupling oxidative phosphorylation. We show that the <i>UCP1</i> gene has been disrupted in the pig lineage about 20 years ago. The inactivation of <i>UCP1</i> provides a genetic explanation for the poor thermoregulation in piglets. </p>
72

Comparative study of gene expression during the differentiation of white and brown preadipocytes

Boeuf, Stéphane January 2002 (has links)
Einleitung<br /> Säugetiere haben zwei verschiedene Arten von Fettgewebe: das weiße Fettgewebe, welches vorwiegend zur Lipidspeicherung dient, und das braune Fettgewebe, welches sich durch seine Fähigkeit zur zitterfreien Thermogenese auszeichnet. Weiße und braune Adipozyten sind beide mesodermalen Ursprungs. Die Mechanismen, die zur Entwicklung von Vorläuferzellen in den weißen oder braunen Fettzellphenotyp führen, sind jedoch unbekannt. Durch verschiedene experimentelle Ansätze konnte gezeigt werden, daß diese Adipocyten vermutlich durch die Differenzierung zweier Typen unterschiedlicher Vorläuferzellen entstehen: weiße und braune Preadipozyten. Von dieser Hypothese ausgehend, war das Ziel dieser Studie, die Genexpression weißer und brauner Preadipozyten auf Unterschiede systematisch zu analysieren.<br /> <br /> Methoden<br /> Die zu vergleichenden Zellen wurden aus primären Zellkulturen weißer und brauner Preadipozyten des dsungarischen Zwerghamsters gewonnen. „Representational Difference Analysis“ wurde angewandt, um potentiell unterschiedlich exprimierte Gene zu isolieren. Die daraus resultierenden cDNA Fragmente von Kandidatengenen wurden mit Hilfe der Microarraytechnik untersucht. Die Expression dieser Gene wurde in braunen und weißen Fettzellen in verschiedenen Differenzierungsstadien und in braunem und weißem Fettgewebe verglichen.<br /> <br /> Ergebnisse<br /> 12 Gene, die in braunen und weißen Preadipozyten unterschiedlich exprimiert werden, konnten identifiziert werden. Drei Komplement Faktoren und eine Fettsäuren Desaturase werden in weißen Preadipozyten höher exprimiert; drei Struktur Gene (Fibronectin, Metargidin und a Actinin 4), drei Gene verbunden mit transkriptioneller Regulation (Necdin, Vigilin und das „small nuclear ribonucleoprotein polypeptide A“) sowie zwei Gene unbekannter Funktion werden in braunen Preadipozyten höher exprimiert. Mittels Clusteranalyse (oder Gruppenanalyse) wurden die gesamten Genexpressionsdaten charakterisiert. Dabei konnten die Gene in 4 typischen Expressionsmuster aufgeteilt werden: in weißen Preadipozyten höher exprimierte Gene, in braunen Preadipozyten höher exprimierte Gene, während der Differenzierung herunter regulierte Gene und während der Differenzierung hoch regulierte Gene.<br /> <br /> Schlußfolgerungen<br /> In dieser Studie konnte gezeigt werden, daß weiße und braune Preadipozyten aufgrund der Expression verschiedener Gene unterschieden werden können. Es wurden mehrere Kandidatengene zur Bestimmung weißer und brauner Preadipozyten identifiziert. Außerdem geht aus den Genexpressionsdaten hervor, daß funktionell unterschiedliche Gruppen von Genen eine wichtige Rolle bei der Differenzierung von weißen und braunen Preadipozyten spielen könnten, wie z.B. Gene des Komplementsystems und der extrazellulären Matrix. / Introduction<br /> Mammals have two types of adipose tissue: the lipid storing white adipose tissue and the brown adipose tissue characterised by its capacity for non-shivering thermogenesis. White and brown adipocytes have the same origin in mesodermal stem cells. Yet nothing is known so far about the commitment of precursor cells to the white and brown adipose lineage. Several experimental approaches indicate that they originate from the differentiation of two distinct types of precursor cells, white and brown preadipocytes. Based on this hypothesis, the aim of this study was to analyse the gene expression of white and brown preadipocytes in a systematic approach. <br /> <br /> Experimental approach<br /> The white and brown preadipocytes to compare were obtained from primary cell cultures of preadipocytes from the Djungarian dwarf hamster. Representational difference analysis was used to isolate genes potentially differentially expressed between the two cell types. The thus obtained cDNA libraries were spotted on microarrays for a large scale gene expression analysis in cultured preadipocytes and adipocytes and in tissue samples.<br /> <br /> Results<br /> 4 genes with higher expression in white preadipocytes (3 members of the complement system and a fatty acid desaturase) and 8 with higher expression in brown preadipocytes were identified. From the latter 3 coded for structural proteins (fibronectin, metargidin and a actinin 4), 3 for proteins involved in transcriptional regulation (necdin, vigilin and the small nuclear ribonucleoprotein polypeptide A) and 2 are of unknown function. Cluster analysis was applied to the gene expression data in order to characterise them and led to the identification of four major typical expression profiles: genes up-regulated during differentiation, genes down-regulated during differentiation, genes higher expressed in white preadipocytes and genes higher expressed in brown preadipocytes.<br /> <br /> Conclusion<br /> This study shows that white and brown preadipocytes can be distinguished by different expression levels of several genes. These results draw attention to interesting candidate genes for the determination of white and brown preadipocytes (necdin, vigilin and others) and furthermore indicate that potential importance of several functional groups in the differentiation of white and brown preadipocytes, mainly the complement system and extracellular matrix.
73

Genetic Analysis of Fat Metabolism in Domestic Pigs and their Wild Ancestor

Berg, Frida January 2006 (has links)
The domestication of the pig began about 9 000 years ago and many of the existing domestic breeds have been selected for phenotypic traits like lean meat and fast growth. Domestic pigs are phenotypically very different from the ancestral wild boar that has adapted to survive in their natural environment. Because of their divergence, crosses between domestic pigs and wild boars are suitable for constructing genetic maps and Quantitative trait locus (QTL) analyses. A cross between the Large White and the European wild boar was thus initiated in the late 1980s. A major QTL for fat deposition and growth, denoted FAT1, was found on chromosome 4. The aim of this thesis was to further characterise the FAT1 locus and to identify the causative gene(s) and mutation(s). We have identified new markers and constructed a high-resolution linkage and RH map of the FAT1 QTL interval. We also performed comparative mapping to the human genome and showed that the pig chromosome 4 is homologous to human chromosomes 1 and 8. The gene order is very well conserved between the two species. In parallel we have narrowed down the FAT1 QTL interval by repeated backcrossing to the domestic Large White breed for six generations. The QTL could be confirmed for fatness but not for growth. Furthermore, the data strongly suggested that there might be more than one gene underlying the FAT1 QTL. Depending on which hypothesis to consider, the one- or two-loci model, the FAT1 interval can be reduced to 3,3 or 20 centiMorgan (cM), respectively, based on the backcross experiments. In the last study we confirm the two-loci model with one locus primarily effecting abdominal fat and another locus primarily effecting subcutaneous fat. We have identified a missense mutation in the RXRG gene which is in strong association with the abdominal fat QTL and the mutation is a potential candidate for that locus. Brown adipose tissue (BAT) is a specific type of fat essential for non-shivering thermogenesis in mammals. Piglets appear to lack BAT and rely on shivering as the main mechanism for thermoregulation. Uncoupling protein 1 (UCP1) gene is exclusively expressed in BAT and its physiological role is to generate heat by uncoupling oxidative phosphorylation. We show that the UCP1 gene has been disrupted in the pig lineage about 20 years ago. The inactivation of UCP1 provides a genetic explanation for the poor thermoregulation in piglets.
74

Función y biogénesis mitocondrial. Diferencias entre géneros

Justo López, Roberto 25 July 2005 (has links)
El objetivo principal de esta tesis se ha centrado en el estudio de las diferencias entre ratas macho y hembra en la morfología, la función y la biogénesis mitocondrial del tejido adiposo marrón (TAM) y del hígado, mediante el análisis de distintas subpoblaciones mitocondriales obtenidas a través del fraccionamiento de la población mitocondrial total. Los resultados han puesto de manifiesto que las diferencias entre géneros a nivel mitocondrial tanto en el TAM y como en el hígado podrían ser atribuidas a la existencia de una subpoblación mitocondrial altamente diferenciada en las hembras, hecho que podría ser indicativo de un proceso de biogénesis mitocondrial distinto entre ambos géneros. Los resultados sugieren la existencia de un factor común a ambos tejidos que influiría en la regulación de dicho proceso. En este sentido, las hormonas sexuales podrían ser uno de los factores candidatos responsables de las diferencias observadas en el presente trabajo. / The main goal of this thesis has been focused on the study of gender differences in the mitochondrial morphology, function and biogenesis both in brown adipose tissue (BAT) and in liver, through the analysis of the several mitochondrial subpopulations isolated by means of the fractionation of the whole mitochondrial population. Results have reflected that the gender dimorphism stated in mitochondrial population both in BAT and in liver could be attributed to the existence to more highly differentiated mitochondria in female rats, which could be the result of a different mitochondrial biogenesis process between genders. Since the existence of a common factor which influences this process in both tissues could be hypothesized, sexual hormones could be one of the main factors responsible for the differences described in the present work
75

Function and activation of human adipose tissue : the role of genes in the link between physical activity and brown adipose-like phenotype

Ntinas, Petros January 2017 (has links)
Background: Excess white adipose tissue (WAT) in humans is considered as a harmful health index. However, increased brown adipose tissue (BAT) and brown-like adipose tissue activity are associated with increased resting energy expenditure (REE) that may help to control body weight. Exercise may enhance browning formation of WAT and reduce WAT that may lead to health improvements. Aims: a) to examine the effects of physical activity on the link between peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α) and fibronectin type III domaincontaining protein 5 (FNDC5) genes in muscle, circulating Irisin and uncoupling protein one (UCP1) of WAT in humans (study 1); b) to examine the relationship between UCP1 mRNA and protein expression as well as PGC-1α, peroxisome proliferatoractivated receptor alpha (PPARα) and PPARγ genes with physical activity levels in WAT of healthy men (study 2); c) to examine the effects of different types of exercise and de-training on the UCP1 mRNA and protein expression (study 3), and d) on leptin mRNA in WAT of healthy men (study 4). Method: Study 1: A systematic review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta- Analyses. Studies 2-4: The total of 46 healthy men subjected to measurements for physical activity levels, diet, anthropometry, body composition, REE, peak oxygen consumption, 1-repetition maximum and provided subcutaneous fat biopsies to determine mRNA and protein expression of six genes in one cross-sectional study and one randomized controlled trial. Results: Study 1: No link was found between PGC- 1α and FNDC5, circulating Irisin and UCP1 of WAT in response to physical activity. Study 2: The mRNA of, UCP1, PGC-1α, PPARα and PPARγ genes of WAT were not associated with physical activity levels. The UCP1 protein expression however, was negatively associated with physical activity levels. Studies 3-4: Different types of chronic exercise and de-training do not affect UCP1 mRNA and protein expression 3 and leptin mRNA in WAT. However, effect size analyses demonstrated increased UCP1 mRNA and protein expression, PPARγ and leptin in response to chronic exercise. Conclusions: There is no evidence to support the link between PGC-1α and FNDC5 in human muscle or the link between FNDC5 and circulating Irisin and UCP1 in WAT in response to exercise. There are no effects of exercise and de-training on browning formation of WAT and no link between browning formation indices and REE, body weight as well as leptin mRNA in healthy men. Further research is required to elaborate the aforementioned phenomena.
76

Methods for automatic analysis of glucose uptake in adipose tissue using quantitative PET/MRI data

Andersson, Jonathan January 2014 (has links)
Brown adipose tissue (BAT) is the main tissue involved in non-shivering heat production. A greater understanding of BAT could possibly lead to new ways of prevention and treatment of obesity and type 2 diabetes. The increasing prevalence of these conditions and the problems they cause society and individuals make the study of the subject important. An ongoing study performed at the Turku University Hospital uses images acquired using PET/MRI with 18F-FDG as the tracer. Scans are performed on sedentary and athlete subjects during normal room temperature and during cold stimulation. Sedentary subjects then undergo scanning during cold stimulation again after a six weeks long exercise training intervention. This degree project used images from this study. The objective of this degree project was to examine methods to automatically and objectively quantify parameters relevant for activation of BAT in combined PET/MRI data. A secondary goal was to create images showing glucose uptake changes in subjects from images taken at different times. Parameters were quantified in adipose tissue directly without registration (image matching), and for neck scans also after registration. Results for the first three subjects who have completed the study are presented. Larger registration errors were encountered near moving organs and in regions with less information. The creation of images showing changes in glucose uptake seem to be working well for the neck scans, and somewhat well for other sub-volumes. These images can be useful for identification of BAT. Examples of these images are shown in the report.
77

Direct evidence of brown adipocytes in different fat depots in children

Rockstroh, Denise, Landgraf, Kathrin, Wagner, Isabel Viola, Gesing, Julia, Tauscher, Roy, Lakowa, Nicole, Kiess, Wieland, Bühligen, Ulf, Wojan, Magdalena, Till, Holger, Blüher, Matthias, Körner, Antje January 2015 (has links)
Recent studies suggested the persistence of brown adipocytes in adult humans, as opposed to being exclusively present in infancy. In this study, we investigated the presence of brown-like adipocytes in adipose tissue (AT) samples of children and adolescents aged 0 to 18 years and evaluated the association with age, location, and obesity. For this, we analysed AT samples from 131 children and 23 adults by histological, immunohistochemical and expression analyses. We detected brown-like and UCP1 positive adipocytes in 10.3% of 87 lean children (aged 0.3 to 10.7 years) and in one overweight infant, whereas we did not find brown adipocytes in obese children or adults. In our samples, the brown-like adipocytes were interspersed within white AT of perirenal, visceral and also subcutaneous depots. Samples with brown-like adipocytes showed an increased expression of UCP1 (>200fold), PRDM16 (2.8fold), PGC1α and CIDEA while other brown/beige selective markers, such as PAT2, P2RX5, ZIC1, LHX8, TMEM26, HOXC9 and TBX1 were not significantly different between UCP1 positive and negative samples. We identified a positive correlation between UCP1 and PRDM16 within UCP1 positive samples, but not with any other brown/beige marker. In addition, we observed significantly increased PRDM16 and PAT2 expression in subcutaneous and visceral AT samples with high UCP1 expression in adults. Our data indicate that brown-like adipocytes are present well beyond infancy in subcutaneous depots of non-obese children. The presence was not restricted to typical perirenal locations, but they were also interspersed within WAT of visceral and subcutaneous depots.
78

Mitochondriální respirace u chladově adaptovaných potkanů. Srovnání tkání. / Mitochondrial respiration at cold acclimated rats. Comparison of tissues.

Flégrová, Eliška January 2016 (has links)
Acclimation to cold or hardening is known for many decades through its beneficial effects on human health. In contrast, sudden exposure to cold, cold shock, is a great risk of cerebral and cardiac injury, especially in the elderly. There is very little published data on the cellular and molecular mechanisms induced by cold adaptation in heart and brain. The aim of this work was to describe and compare different properties heart, liver, brain and brown adipose tissue mitochondria of rats housed at 25 ± 1 řC and at mild cold (9 ± 1 řC, 5 weeks). The high-resolution oxygraphy, spectrophotometry and Western blotting analyses were used. We found differences in the respiratory control between the heart and liver. Cold acclimation decreased activity of the Krebs cycle enzymes. Fatty acid contribution to the respiration reached the maximum in brown fat and the minimum in the hippocampus. However, further study is necessary.
79

Utilizace energetických substrátů v bílé a hnědé tukové tkáni při metabolickém syndromu / Utilization of energy substrates in white and brown adipose tissue in metabolic syndrome

Seďová, Karolína January 2017 (has links)
1 Abstrakt Hnědá tuková tkáň je unikátní termoregulační orgán, její funkcí je přeměňovat energii ve formě protonového gradientu na energii tepelnou a zároveň snižovat efektivitu metabolismu. Její funkce se zdá být nadějí v léčbě metabolického syndromu a komplikací s ním spojených. Efekt hnědé tukové tkáně v léčbě MS však stále není objasněn a proto jsme chirurgicky odstranili tuto tkáň u potkanů, kteří trpí metabolickým syndromem, abychom objasnili důsledky extirpace na parametry metabolického syndromu. V této práci jsme sledovali aktivitu interskapulární tukové tkáně na parametry metabolického syndromu. Srovnávali jsme parametry mezi kmeny HHTg potkanů a kontrolním kmenem potkanů Wistar a pozorovali jsme nižší hmotnost potkanů kmene HHTg přes projevy ostatních parametrů metabolického syndromu, jako je dyslipidémie, inzulinová rezistence tukové tkáně, vyšší hodnoty NEMK v krvi. Zjistili jsme, že tito potkani mají významně vyšší aktivitu iBAT, jak v inkorporaci palmitátu do lipidů, tak ve spalování lipidů ve formě CO2 a zejména v nižším věku. Tato zjištění nás vedla k hypotéze, že iBAT by mohla mít zásadní vliv na parametry MS u neobézních potkanů. Extirpací iBAT u mladých potkanů, ani u potkanů v pokročilejším věku však neměla zásadní vliv na metabolismus ani na hmotnost. Dokonce došlo ke zlepšení některých...
80

A Role for the Lipid Droplet Protein HIG2 in Promoting Lipid Deposition in Liver and Adipose Tissue: A Dissertation

DiStefano, Marina T. 23 March 2016 (has links)
Chronic exposure of humans or rodents to high calorie diets leads to hypertriglyceridemia and ectopic lipid deposition throughout the body, resulting in metabolic disease. Cellular lipids are stored in organelles termed lipid droplets (LDs) that are regulated by tissue-specific LD proteins. These proteins are critical for lipid homeostasis, as humans with LD protein mutations manifest metabolic dysfunction. Identification of novel components of the LD machinery could shed light on human disease mechanisms and suggest potential therapeutics for Type 2 Diabetes. Microarray analyses pinpointed the largely unstudied Hypoxia-Inducible Gene 2 (Hig2) as a gene that was highly expressed in obese human adipocytes. Imaging studies demonstrated that Hig2 localized to LDs in mouse hepatocytes and the human SGBS adipocyte cell line. Thus, this work examined the role of Hig2 as a LD protein in liver and adipose tissue. Hig2 deficiency reduced triglyceride deposition in hepatocytes; conversely, ectopic Hig2 expression promoted lipid deposition. Furthermore, liver-specific Hig2-deficient mice displayed improved glucose tolerance and reduced liver triglyceride content. Hig2 deficiency increased lipolysis and -oxidation, accounting for the reduced triglyceride accumulation. Similarly, adipocyte-specific Hig2-deficient mice displayed improved glucose tolerance, reduced adipose tissue weight and brown adipose tissue that was largely cleared of lipids. These improvements were abrogated when the animals were placed in thermoneutral housing and brown adipocyte-specific Hig2-deficient mice also displayed improved glucose tolerance, suggesting that active brown fat largely mediates the metabolic phenotype of Hig2 deletion. Thus, this work demonstrates that Hig2 localizes to LDs in liver and adipose tissue and promotes glucose intolerance.

Page generated in 0.0793 seconds