• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 27
  • 22
  • 7
  • 6
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 209
  • 192
  • 37
  • 35
  • 25
  • 24
  • 23
  • 19
  • 18
  • 18
  • 18
  • 17
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The role of nuclear architecture in the context of antigenic variation in Trypanosoma brucei / Über die Rolle der Zellkernarchitektur im Kontext von Antigenvariation in Trypanosoma brucei

Müller-Hübner, Laura January 2020 (has links) (PDF)
Antigenic variation of surface proteins is a commonly used strategy among pathogens to evade the host immune response [63]. The mechanism underlying antigenic variation relies on monoallelic exclusion of a single gene from a hypervariable multigene family combined with repeated, systematic changes in antigen expression. In many systems, these gene families are arranged in subtelomeric contingency loci that are subject to both transcriptional repression and enhanced mutagenesis and recombination [16]. Eviction of a selected gene from a repressed antigen repertoire can be achieved e.g. by recombination into a dedicated, transcriptionally permissive site or by local epigenetic alterations in chromatin composition of the selected gene. Both processes are ultimately affected by genome architecture. Architectural proteins controlling antigenic variation have, however, remained elusive in any pathogen. The unicellular protozoan parasite Trypanosoma brucei evades the host immune response by periodically changing expression of a single variant surface glycoprotein (VSG) from a repertoire of ~3000 VSG genes – the largest mutually exclusively expressed gene family described today. To activate a selected VSG gene, it needs to be located in a dedicated expression site that becomes subject to relocation into a distinct, transcriptionally active subnuclear compartment, the expression site body (ESB). Whereas this emphasizes the importance of nuclear architecture in regulating antigen expression in T. brucei, the mechanisms underlying spatial positioning of DNA in T. brucei are not well understood. In this study I applied genome-wide chromosome conformation capture (Hi-C) to obtain a comprehensive picture of the T. brucei genome in three dimensions, both in procyclic and bloodstream form parasites. Hi-C revealed a highly structured nucleus with megabase chromosomes occupying distinct chromosome territories. Further, specific trans interactions between chromosomes, among which are clusters of centromeres, rRNA genes and procyclins became apparent. With respect to antigenic variation, Hi-C revealed a striking compaction of the subtelomeric VSG gene repertoire and a strong clustering of transcriptionally repressed VSG-containing expression sites. Further, Hi-C analyses confirmed the spatial separation of the actively transcribed from the silenced expression sites in three dimensions. I further sought to characterize architectural proteins mediating nuclear architecture in T. brucei. Whereas CTCF is absent in non-metazoans, we found cohesin to be expressed throughout the cell cycle, emphasizing a function beyond sister chromatid cohesion in S-phase. By Chromatin-Immunoprecipitation with sequencing (ChIPseq), I found cohesin enrichment to coincide with the presence of histone H3 vari- ant (H3.V) and H4 variant (H4.V). Most importantly, cohesin and the histone variants were enriched towards the VSG gene at silent and active expression sites. While the deletion of H3.V led to increased clustering of expression sites in three dimensions and increased chromatin accessibility at expression site promoters, the additional deletion of H4.V increased chromatin accessibility at expression sits even further. RNAseq showed that mutually exclusive VSG expression was lost in H3.V and H4.V single and double deletion mutants. Immunofluorescence imaging of surface VSGs, flow cytometry and single-cell RNAseq revealed a progressive loss of VSG-2 expression, indicative of an increase in VSG switching rate in the H3.V/H4.V double deletion mutants. Using long-read sequencing technology, we found that VSG switching occurred via recombination and concluded, that the concomitant increase in spatial proximity and accessibility among expression sites facilitated the recombination event. I therefore identified the histone variants H3.V and H4.V to act at the interface of global nuclear architecture and chromatin accessibility and to represent a link between genome architecture and antigenic variation. / Antigenvariation ist ein weit verbreiteter Mechanismus der Immunevasion von Pathogenen [63]. Sie beruht auf der transkriptionellen Selektion eines einzelnen Gens aus einer hypervariablen Multi-Gen Familie und dem wiederholten, systematischen Wechsel zwischen der Expression verschiedener Gene dieser Familie. In vielen Organismen sind diese Gene als Kontingenzgene in den Subtelomeren angeordnet, wo sind einerseits transkriptionell reprimiert werden, andererseits erhöhter Mutagenese und Rekombination unterliegen [16]. Monoallelische Exklusion eines Gens und die damit einhergehende Eviktion aus seinem reprimierten genomischen Umfeld beruht auf unterschiedlichen molekularen Mechanismen. Sie ist, zum Beispiel, das Resultat einer Rekombination des betreffenden Gens in einen dedizierten, transkriptionell permissiven Lokus oder wird durch epigenetische, bzw. räumliche Umstrukturierung des entsprechenden Gens oder zugrunde liegenden Chromatins erreicht. Beide Prozesse sind letztendlich durch die Architektur des Genoms beeinflusst. Architekturelle Proteine, die ebenfalls Antigenvariation kontrollieren, sind in vielen Pathogenen unbekannt. Der parasitäre Protozoe Trypanosoma brucei entkommt einer Elimination durch die Immunabwehr seines Wirtes durch den periodischen Wechsel in der Expression eines von fast 3000 variablen Oberflächenglykoproteinen (VSGs). VSG-Gene umfassen die größte, monoallelisch exprimierte Genfamilie, die bislang beschrieben wurde. Um exprimiert zu werden, muss das selektierte VSG Gen in eine Expressionsseite transloziert sein. Diese wiederum wird in einem dedizierten Kompartment des Zellkerns, dem Expressionsseiten-Zellkernkörper (ESB), transkribiert. Obgleich diese Gegebenheiten die zentrale Rolle der Zellkernarchitektur in der Antigenvariation in T. brucei verdeutlichen, so ist wenig über die ihr zugrundeliegenden Mechanismen bekannt. Um ein umfassendes Bild der Zellkernarchitektur in Trypanosomen zu bekommen, habe ich in der hier vorliegenden Doktorarbeit Hi-C, eine Methode zur Feststellung chromosomaler Konformationen, in T. brucei Blutstromform und Prozyklen etabliert und angewendet. Die Applikation dieser Technik offenbarte einen hoch strukturierten Zellkern: Chromosome sind territorial angeordnet und gehen spezifische Interaktionen in trans untereinander ein. Dies sind beispielsweise Interaktionen zwischen Zentromeren, Genen für ribosomale RNA und Prozyklinen unterschiedlicher Chromosomen. Auch Interaktionen, die in funktionellem Zusammenhang mit Antigenvariation stehen, wurden gefunden. Dabei handelte es sich zum Einen um strukturelle Verdichtungen des subtelomerischen Chromatins transkriptionell reprimierter VSG Gene und zum Anderen um erhöhte Interaktionen zwischen reprimierten VSG-Expressionsseiten. Hi-C bestätigte außerdem die räumliche Separation der aktiv transkribierten Expressionsseite von den übrigen, stillen VSG-Expressionsseiten. Des Weiteren suchte ich nach Proteinen, die in der Aufrechterhaltung der Zellkernarchitektur in T. brucei wirken. Anders als CTCF ist Cohesin nicht auf Metazoen beschränkt. Ich fand Cohesin über den gesamten Zellzyklus exprimiert, was eine architekturelle Rolle des Proteinkomplexes zuzüglich der Schwesterchromatidkohäsion suggerierte. Mittels Chromatin-Immunpräzipitation konnte ich feststellen, dass Cohesin mit den Histonvarianten H3.V und H4.V an vielen Stellen des Ge- noms kolokalisierte, insbesondere über dem VSG Gen der aktiven und reprimierten Expressionsseiten. Während eine Deletion von H3.V zu erhöhten Interaktionsfrequenzen zwischen Expressionsseiten führte, resultierte eine gleichzeitige Deletion von H3.V und H4.V zu einer additiven Öffnung des Chromatins an Expressionsseiten. RNA Sequenzierungen ergaben, dass in der H3.V/H4.V Doppeldeletionsmutante die Transcription von VSG Genen erhöht war, was auf einen funktionellen Verlust der monoallelischen Expression hindeutete. Immunfluoreszenzaufnahmen der VSGs auf der Zelloberfläche, Durchflusszytometrie und RNA Sequenzierung einzelner Zellen zeigten einen fortschreitenden Verlust der Expression von VSG-2, was auf einen erhöhten Wechsel der VSG-Expression auf dem Einzelzelllevel hindeutete. Durch die Sequenzierung der genomischen DNA der H3.V/H4.V Doppeldeletionsmutante konnten wir feststellen, dass der primäre Mechanismus des Wechsels in der VSG Expression auf eine Rekombination zwischen Expressionsseiten zurückzuführen war. Diese Rekombination wurde vermutlich durch die gesteigerte räumliche Nähe und Öffnung des Chromatins der Expressionsseiten begünstigt. Zusammenfassend konnte ich feststellen, dass die Histonvarianten H3.V und H4.V auf der Schnittstelle zwischen globaler Zellkernarchitektur und lokaler Chromatinzugänglichkeit agieren und funktionell ein molekulares Verbindungsstück zwischen Genomarchitektur und Antigenvariation darstellen.
32

Variation in repetitive DNA in African Trypanosomes

Hide, Geoffrey January 1988 (has links)
No description available.
33

Hybrid formation in African trypanosomes

Wells, Jeremy Mark January 1987 (has links)
No description available.
34

Nitric oxide : host-protective or host-destructive during African trypanosomiasis

Mabbott, Neil A. January 1995 (has links)
The aims of the research presented in this thesis were concerned with investigating the effect of inducible nitric oxide (NO) synthase expression during Trypanosoma brucei infections on both host and parasite. NO was shown to exhibit a potent cytostatic effect on parasite proliferation. Oxyhaemoglobin is a potent scavenger of NO. The cytostatic effects of NO on the trypanosomes were completely prevented through the addition of erythrocytes to the cultures. This implies that in the host blood-stream, NO is unlikely to be involved in the eradication of the parasites. Through the adoptive transfer of suppressor macrophages from T.brucei-infected donor mice to naive recipients, it was demonstrated that NO mediates a suppressive effect on host lymphocyte responses in vivo. Furthermore, suppressor macrophages were shown to have a finite life-span and undergo NO-mediated apoptosis. Evidence also suggested that elevated NO production in the bone marrow of T.brucei -infected mice is likely to play a significant role in the anaemia resulting from T.brucei infection. Experiments demonstrated that a soluble lysate prepared from freeze-thawed blood-stream form T.brucei, activated interferon (IFN)-gamma primed macrophages to express high levels of NO synthase. Experiments also demonstrated that viable blood-stream forms, but not procyclic form trypanosomes, released a soluble factor which in combination with IFN-gamma induced NO synthase. The absolute requirement of IFN-gamma priming for NO synthase activation by T.brucei was studied using macrophages from mutant mice lacking functional IFN-gamma receptors (IFN-gamma R -/- mutant mice). In comparison to macrophages from wild-type mice, cells from IFN-gamma-R-/- mutant mice were unable to produce NO following stimulation in vitro or infection in vivo. Finally, utilising mice with specific immunodeficiencies it was demonstrated that natural killer cells and a/b T-lymphocytes were important sources of IFN-gamma during murine T.brucei infections.
35

Studies on fucosylation in Trypanosoma brucei

Bandini, Giulia January 2011 (has links)
The biosynthesis of GDP-Fucose, the activated donor for fucose, has been recently shown to be essential in the parasite Trypanosoma brucei. Fucose is a common sugar modification on eukaryotic glycan structures, but it has not been well described in trypanosomatids. To elucidate the role of fucose in T. brucei we searched for putative fucosyltransferases in this parasite. A single putative T. brucei fucosyltransferase (TbFT) was identified and recombinantly expressed in Escherichia coli. The protein was active and structural characterization of its reaction product identified it as a GDP-Fuc: ß-D-galactose a-1,2-fucosyltransferase with preference for Galß1,3GlcNAc containing structures as glycan acceptors. A procyclic form conditional null mutant for TbFT was generated and this glycosyltransferase shown to be essential for parasite growth in vitro, with the mutant cells displaying a slightly abnormal morphology and an apparent reduction in the surface high molecular weight glycoconjugate complex. Here we also describe the various experimental approaches that were used to try to identify the fucosylated glycocojugates in T. brucei. Lastly, to better understand the biosynthesis of GDP-Mannose, the starting metabolite for the biosynthesis of GDP-Fuc, we biochemically characterized T. brucei phosphomannomutase (TbPMM). Here we show this enzyme could interconvert not only mannose-phosphates, but also glucose-phosphates.
36

Die Kontrolle der monoallelen Expression, antigenen Variation und Entwicklung in Trypanosoma brucei / The control of monoallelic expression, antigenic variation and development of Trypanosoma brucei

Batram, Christopher January 2013 (has links) (PDF)
Die ausschließliche Expression von nur einem Gen aus einer großen Genfamilie ist ein weit verbreitetes Phänomen, das als monoallele Expression bezeichnet wird. In dem Blutparasiten Trypanosoma brucei stellt die Expression eines einzigen variablen Oberflächenglykoproteins (VSG) aus einem Repertoire von über 1000 verschiedenen Genen die Grundlage für die Immunevasion dar. Durch einen periodischen Wechsel der VSG Expression (Antigene Variation) bleibt der Parasit vom Immunsystem des Wirtes unerkannt. Die VSG Gene werden aus telomerischen Blutstromform Expressionsstellen (BES) transkribiert, von denen nur eine zu einem bestimmten Zeitpunkt aktiv ist. Die Kontrolle der monoallelen VSG Expression ist somit einer der wichtigsten Virulenzfaktoren von T. brucei. Ziel dieser Arbeit war es, die Vorgänge eines transkriptionellen Wechsels zwischen zwei BESs zu beschreiben. Das Ausschalten des aktiven VSGs durch RNA-Interferenz hatte zuvor gezeigt, dass dies nicht zu einer erhöhten Wechselrate führt. Es wurde daher untersucht, welche Auswirkungen das Anschalten einer zweiten BES auf die monoallele Expression hat. Da es bisher keine Möglichkeit gibt, eine inaktive BES gezielt zu aktivieren, wurde ein artifizielles System gewählt, das die gezielte induzierbare Expression eines Gens ermöglicht. Die BESs unterscheiden sich in der Anzahl und Zusammensetzung der Expressionsstellen-assoziierte-Gene (ESAGs), jedoch besitzt jede BES ein telomernahes VSG. Somit wird, bei einer BES Aktivierung, in jedem Fall ein neues VSG exprimiert. Durch die induzierbare Expression eines zweiten VSGs wurde so das Anschalten einer neuen BES simuliert. Mithilfe dieses Systems konnte gezeigt werden, dass das VSG selbst für die Kontrolle der monoallelen Expression verantwortlich ist. Die ektopische Überexpression eines zweiten VSGs führte zu einer graduellen Inaktivierung der BES. Infolge dessen verlangsamte sich der Zellzyklus und die Zellen verblieben bis zu fünf Tage in einem ruhenden Zustand. Genauere Analysen dieses Zustandes zeigten, dass es sich hierbei um ein bisher unbekanntes, reversibles Zwischenstadium zwischen proliferierenden sogenannten Long Slender und arretierten sogenannten Short Stumpy Formen handelt. Die Ergebnisse dieser Arbeit führten zu einem neuen Modell, das die Kontrolle der monoallelen VSG Expression mit der Entwicklung der Trypanosomen mechanistisch verbindet. / The exclusive expression of only one gene from a gene family is a common phenomenon, known as monoallelic expression. The blood parasite Trypanosoma brucei evades the host immune system by expressing only one variant surface glycoprotein (VSG) from a repertoire of hundreds of different VSG genes. By periodically switching VSG expression (antigenic variation) the parasites evade the host antibody response. The VSG genes are transcribed from specialized telomeric bloodstream form expression sites (BESs), of which only one is active at any given time. Thus, monoallelic VSG expression is one of T. brucei's most important virulence factors. The aim of this work was to describe the processes occuring while transcription switches from one BES to another. The depletion of the active VSG by RNA interference (RNAi) was shown previously to have no effect on switching frequency. It was therefore investigated here, which influence the activation of a new BES would have on monoallelic expression. So far, it has not been possible to specifically activate a silent BES. Therefore, an artificial system was chosen which allows for inducible expression of a particular gene. The BESs differ in number and composition of expression site associated genes (ESAGs), but all contain a telomeric VSG gene. Thus, activation of a new BES will inevitably lead to expression of a second VSG. To simulate - in the most straightforward manner - the activation of a new BES, a second VSG was inducibly expressed. Using this system, it was shown that the VSG itself controls its own monoallelic expression. The ectopic overexpression of a second VSG led to a gradual inactivation of the BES. This, in turn, led to a prolonged cell division cycle and the cells remained in a dormant stage for up to 5 days. Further analyzes of this stage revealed a new, reversible intermediate stage between proliferating long slender and arrested short stumpy forms. The results of this work led to a new model that mechanistically links the control of monoallelic VSG expression and development in trypanosomes.
37

Evolution and function of membrane proteins in Trypanosoma brucei

Allison, Harriet Claire January 2013 (has links)
No description available.
38

Genome characterisation and mobility investigation in trypanosomes /

Branche, Carole, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2006. / Härtill 4 uppsatser.
39

Mutational analysis of a gene required for flagellar motility in the African sleeping sickness parasite /

Dantas, Sonia N. January 2008 (has links) (PDF)
Undergraduate honors paper--Mount Holyoke College, 2008. Dept of Biological Sciences. / Includes bibliographical references (leaves 64-69).
40

Functional analysis of inner-arm dynein knockdowns in Trypanosoma brucei /

Kinzel, Kathryn Whitney. January 2008 (has links) (PDF)
Undergraduate honors paper--Mount Holyoke College, 2008. Dept of Biological Sciences. / Includes bibliographical references (leaves 57-59).

Page generated in 0.0379 seconds