• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 305
  • 52
  • 46
  • 31
  • 31
  • 31
  • 11
  • 10
  • 10
  • 8
  • 7
  • 6
  • 5
  • 3
  • 3
  • Tagged with
  • 673
  • 106
  • 105
  • 90
  • 62
  • 61
  • 61
  • 61
  • 45
  • 44
  • 43
  • 43
  • 43
  • 42
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Bubble Migration in Pore Networks of Uniform Geometry

Ghasemian, Saloumeh January 2012 (has links)
The behavior of bubbles migrating in porous media is a critical factor in several soil remediation operations such as in situ air sparging, supersaturated water injection, bioslurping, trench aeration and up-flow operation of moving bed sand filters as well as in the oil and gas industry. Groundwater aquifers are constantly polluted by human activity and a common threat to fresh water is the contamination by non-aqueous phase liquids (NAPL). In many NAPL removal technologies, gas bubbles carrying NAPL residuals move upwards through the water-saturated porous media and thus play an essential role in contaminant recovery. The mobilization of the residual oil blobs in oil reservoirs is another important application for rising bubbles in porous media. After an oil field is waterflooded, a significant fraction of oil, referred to as waterflood residual oil, remains trapped. A potential mechanism to recover this residual oil is the mobilization of oil by gas bubbles moving upwards in water-wet systems. The main focus of this work was to measure the velocity of bubbles of various lengths during their migration through a water-wet porous medium. Experiments were conducted in a saturated glass micromodel with different test liquids, air bubbles of varying lengths and different micromodel elevation angles. More than a hundred experimental runs were performed to measure the migration velocity of bubbles as a function of wetting fluid properties, bubble length, and micromodel inclination angle. The results showed a linear dependency of the average bubble velocity as a function of bubble length and the sine of inclination angle of the model. Comparisons were made using experimental data for air bubbles rising in kerosene, Soltrol 170 and dyed White Oil. The calculated permeability of the micromodel was obtained for different systems assuming the effective length for viscous dissipation is equal to the initial bubble length. It was found that the calculated permeability had an increasing trend with increasing bubble length. Laboratory visualization experiments were conducted for air bubbles in White Oil (viscosity of 12 cP) to visualize the periodic nature of the flow of rising bubbles in a pore network. The motion of the air bubbles in saturated micromodel was video-recorded by a digital camera, reviewed and analyzed using PowerDVD ™11 software. An image of a bubble migrating in the porous medium was obtained by capturing a still frame at a specific time and was analyzed to determine the bubble shape, the exact positions of the bubble front and bubble tail during motion and, thus, the dynamic length of the bubble. A deformation in the shape of the bubble tail end was observed for long bubbles. The dynamic bubble lengths were larger than the static bubble lengths and showed an increasing trend when increasing the angle of inclination. The dynamic bubble lengths were used to recalculate the bubble velocity and permeability. A linear correlation was found for the average bubble velocity as a function of dynamic bubble length. Numerical simulation was performed by modifying an existing MATLAB® simulation for the rise velocity of a gas bubble and the induced pressure field while it migrates though porous media. The results showed that the rise velocity of a gas bubble is affected by the grid size of the pore network in the direction perpendicular to the bubble migration. In reality, this effect is demonstrated by the presence of other bubbles near the rising bubble in porous media. The simulation results showed good agreement with experimental data for long bubbles with high velocities. More work is required to improve the accuracy of simulation results for relatively large bubbles.
122

The Effect of Electrohydraulic Discharge on Flotation Deinking Efficiency

Carleton, James Richard 12 January 2005 (has links)
Firing an underwater spark discharge generates an expanding plasma which causes a spherical shockwave to propagate through the surrounding water. The shockwave can have many effects, including resonance effects on bubbles, mechanical destructive effects on solid surfaces and living organisms, and sonochemical oxidative effects on particles and chemical species present in the water. This phenomenon has been shown to improve the efficiency of ink removal in a laboratory flotation deinking cell, while simultaneously decreasing fiber loss. These process improvements are attributed to the sonochemical oxidation of ink particle surfaces, caused by shockwave-induced cavitation. This finding is supported by zeta potential measurements. Sparking was found to reduce the zeta potential of ink particles by up to 20 mV. When sparking was performed during deinking, no effect was found on either ink removal or solids loss. However, when the pulp was pretreated with sparking before flotation, a significant improvement was seen in the brightness gain. Further, fiber loss was decreased by up to 25% in a single flotation stage. The economics of this process are attractive; payback is on the order of three months based on fiber savings alone. Also, at about 1.5 kJ per spark, the power requirements are minimal with respect to the benefit derived.
123

Pore formation from bubble entrapment by a solidification front and pore formation in solid

Hsiao, Shih-Yen 18 August 2012 (has links)
In this dissertation¡Atwo topics in microbubble systems are investigated¡G1) Pore Formation from Bubble Entrapment by a Solidification Front¡F2) Pore formation in Solid¡C In the first study¡Amechanism of the pore shape in solid resulted from a tiny bubble captured by a solidification front is geometrically and generally investigated¡CPore formation and its shape in solid are one of the most critical factors affecting properties¡Amicrostructure¡Aand stresses in materials¡CFor simplicity without loss of generality, the tiny bubble beyond the solidification front is considered to have a spherical cap in this work¡CIntroducing a geometrical analysis it is found that the contact angle of the bubble cap can be governed by the Abel¡¦s equation of the first kind in terms of displacement of the solidification front¡CThe pore can be elongated, expanded¡Ashrunk and closed¡Adepending on relative variation of the bubble growth rate and solidification rate¡CThe pore can be closed by imposing infinitesimal bubble growth rate-to-solidification rate ratio¡Aand a finite bubble growth-to-solidification rate ratio in order to produce a minimal bubble radius at the contact angle of ¡CA criterion intuitively accepted in the literature¡Astating that closure of a pore is attributed to a greater solidification rate than bubble growth rate¡Ais incorrect¡CThe predicted pore shape and contact angle agree with experimental observations¡CManipulating either bubble growth rate or solidification rate can control pore formation in solid¡C In second study¡Athe shapes of a growing or decaying bubble entrapped by a solidification front are predicted in this work¡CThe bubble results from supersaturation of a dissolved gas in the liquid ahead of the solidification front¡CPore formation and its shape in solid are one of the most critical factors affecting properties¡Amicrostructure, and stresses in materials¡CIn this study¡Athe bubble and pore shapes entrapped in solid can be described by a three-dimensional phase diagram¡Aobtained from perturbation solutions of Young-Laplace equation governing the tiny bubble shape in the literature¡CThe predicted growth and entrapment of a microbubble as a pore in solid are found to agree with experimental data¡CThis work thus provides a realistic prediction of the general growth of the pore shape as a function of different working parameters¡C
124

Fabrication of mDMFC and Effect of Methanol Modification on its Performance

Lu, Chang-Wei 21 August 2012 (has links)
Direct methanol fuel cell (DMFC) were characterized with low operation temperature, high energy density, rapid activation, easy to obtain, easy to carry, safety, stability and low pollution. Therefore, DMFCs were thought as the next generation of power suppliers to replace lithium battery in the future. In order to meet the miniaturization demand of portable electronic devices, this research tried to fabricate a £gDMFC, simplify component, and lower cost by using MEMS technique. This research used TMAH etching, PEACE, and KOH etching, CNT growth technique to fabricate the hill-like diffusion layer (HDL) electrode which combined the channel structure and through-hole silicon (THS) electrode. Another emphasis of this research was to improve the bubble cover problem for £gDMFCs. The bubble cover problem resulted from the CO2 bubble generated in methanol oxidation reaction difficultly removed and resulted in adverse effect for reaction. This research tried to use the surfactants which used in electroforming to improve the bubble cover problem by improvement surface tension of fuel. Experiments show that using the HDL electrode in anode and the THS electrode in cathode would get the maximum power density (0.186 mW/cm2). The powder density of the design £gDMFC is 10 and 2.5 times larger than the one with pure carbon paper electrodes and the HDL electrodes. Surfactant MA was suitable as a wetting of methanol. Bubble size could reduce 1/2 to 1/3 and bubble cover area could reduce 20% by adding MA. Add MA in the fuel cell could help the bubbles remove to avoid the bubble cover problem. Though MA addition would have the adverse effect for methanol reaction, could get the stabile voltage and extend the discharge time.
125

CFD models for polydispersed bubbly flows

Krepper, Eckhard, Lucas, Dirk 31 March 2010 (has links) (PDF)
Many flow regimes in Nuclear Reactor Safety Research are characterized by multiphase flows, with one phase being a continuous liquid and the other phase consisting of gas or vapour of the liquid phase. In dependence on the void fraction of the gaseous phase the flow regimes e.g. in vertical pipes are varying from bubbly flows with low and higher volume fraction of bubbles to slug flow, churn turbulent flow, annular flow and finally to droplet flow. In the regime of bubbly and slug flow the multiphase flow shows a spectrum of different bubble sizes. While disperse bubbly flows with low gas volume fraction are mostly mono-disperse, an increase of the gas volume fraction leads to a broader bubble size distribution due to breakup and coalescence of bubbles. Bubbles of different sizes are subject to lateral migration due to forces acting in lateral direction different from the main drag force direction. The bubble lift force was found to change the sign dependent on the bubble size. Consequently this lateral migration leads to a de-mixing of small and large bubbles and to further coalescence of large bubbles migrating towards the pipe center into even larger Taylor bubbles or slugs. An adequate modeling has to consider all these phenomena. A Multi Bubble Size Class Test Solver has been developed to investigate these effects and test the influence of different model approaches. Basing on the results of these investigations a generalized inhomogeneous Multiple Size Group (MUSIG) Model based on the Eulerian modeling framework has been proposed and was finally implemented into the CFD code CFX. Within this model the dispersed gaseous phase is divided into N inhomogeneous velocity groups (phases) and each of these groups is subdivided into Mj bubble size classes. Bubble breakup and coalescence processes between all bubble size classes Mj are taken into account by appropriate models. The inhomogeneous MUSIG model has been validated against experimental data from the TOPFLOW test facility.
126

Bubble size distributions in non-yeasted wheat (Triticum aestivum L.) flour dough

Koksel, Havva Filiz January 2014 (has links)
Bread owes its appeal to its aerated structure which directly relies on the bubbles entrained into the dough during mixing. If the bubble size distribution (BSD) in the dough can be determined at the end of mixing, then the resulting loaf quality could be predicted before bread is fully manufactured. However, non-invasively monitoring the structure of a fragile opaque soft solid such as dough is challenging. This thesis addressed the challenge by determining dough’s BSD and its evolution using ultrasound and X-ray microtomography. Using a resonant scattering model and the frequency dependence of the ultrasonic parameters measured in the dough, the change in the BSD in dough (made without yeast) with time as a result of disproportionation was determined. At 30 min after mixing, the median radius (R0) of the lognormal BSD was 6.5 microns. Converting the BSD to the radius dependence of bubble volume fraction (BVF(R)), R0V (the median radius of BVF(R)) was 66.4 microns and increased 18 % in the succeeding 90 min. In order to validate the bubble sizes determined ultrasonically, X-rays from a synchrotron source were utilized to examine dough’s microstructure. Large numbers of very small bubbles were discovered and it was apparent that lognormality did not describe the BSDs. Nevertheless, lognormal characterization of the BVF(R) was appropriate. At 30 min after mixing R0V of the BVF(R) was 32.5 microns and it increased by 20 % in the succeeding 90 min, supporting the ultrasonic quantification of bubble volume changes due to disproportionation. Changes in the mode, median and mean of the BVF(R) with time after mixing had the same trend for ultrasound and for X-ray microtomography. The time evolution of the mode of the BVF(R) obtained by ultrasound and X-ray microtomography matched very well; both increasing linearly as a function of time. Ultrasonic assessments of bubble sizes and their changes with time are very encouraging, but the ultrasonic model should use distribution functions that precisely define the empirical data, perhaps not making ‘pre-assumptions’ of lognormality for the BSD data. / February 2015
127

The influence of the Internet on Identity Creation and Extreme groups

Emilsson, Rasmus January 2015 (has links)
In the age of the Internet, extreme groups have seen resurgence in the way they can communicate and recruit through the new medium whether they are white supremacists or hacktivists. Examining the history and modern behaviors of both white supremacy groups and Anonymous, this paper aims to research and answer how the different groups use the Internet to influence identities and if the methods to do so differ from the old ones and through the use of several concepts, mainly the Echo Chamber and the Filter Bubble, narrow down the effects that leads to a person joining an extreme group.
128

Optimized profile extraction and three dimensional reconstruction techniques applied to bubble shapes

Vasudevamurthy, Gokul 30 September 2004 (has links)
In order to predict the behavior of bubbly flows, it is necessary to know the three dimensional profiles of the bubbles present in the flow. With advancements in the field of flow visualization, accurate reconstruction of the bubble shape has become necessary. The PIV and the SIV techniques, used to acquire images of particles and bubbles, have been found to be extremely useful in this regard. The study, development, implementation, applications and limitations of a unique reconstruction technique applied to various regular and irregular bubble shapes, using the two orthogonal projections of the three-dimensional bubble profiles as captured by the SIV cameras are presented here. The technique is a blend of neural networks, combinatorial optimization and advanced computer aided design methods. The technique involves the robustness and ruggedness of the neural network approach and the flexibility and reliability of advanced computer aided design methods. The technique uses a well-known problem in neural networks and combinatorial optimization known as the Traveling Salesman Problem approach to identify the bubble boundaries on the images. An optimization solution technique known as the Simulated Annealing technique is employed to solve the Traveling Salesman Problem and obtain the bubble profiles. These results are employed to reconstruct bubble shapes using NURBS computer aided design software. Two main applications of this technique are demonstrated and the results are found to be promising. The first application included the calculation of the void fraction at a particular depth of the channel/ pipe and at a particular radius of the channel. The second application was Lagrangian tracking of bubbles, wherein the centroids of the bubbles were tracked between image frames to determine the linear and transverse velocities of the bubbles. This technique has shown scope for development including the development as integrated bubble surface reconstruction software and advanced modifications at various levels for efficient and accurate reconstruction.
129

Bubble Migration in Pore Networks of Uniform Geometry

Ghasemian, Saloumeh January 2012 (has links)
The behavior of bubbles migrating in porous media is a critical factor in several soil remediation operations such as in situ air sparging, supersaturated water injection, bioslurping, trench aeration and up-flow operation of moving bed sand filters as well as in the oil and gas industry. Groundwater aquifers are constantly polluted by human activity and a common threat to fresh water is the contamination by non-aqueous phase liquids (NAPL). In many NAPL removal technologies, gas bubbles carrying NAPL residuals move upwards through the water-saturated porous media and thus play an essential role in contaminant recovery. The mobilization of the residual oil blobs in oil reservoirs is another important application for rising bubbles in porous media. After an oil field is waterflooded, a significant fraction of oil, referred to as waterflood residual oil, remains trapped. A potential mechanism to recover this residual oil is the mobilization of oil by gas bubbles moving upwards in water-wet systems. The main focus of this work was to measure the velocity of bubbles of various lengths during their migration through a water-wet porous medium. Experiments were conducted in a saturated glass micromodel with different test liquids, air bubbles of varying lengths and different micromodel elevation angles. More than a hundred experimental runs were performed to measure the migration velocity of bubbles as a function of wetting fluid properties, bubble length, and micromodel inclination angle. The results showed a linear dependency of the average bubble velocity as a function of bubble length and the sine of inclination angle of the model. Comparisons were made using experimental data for air bubbles rising in kerosene, Soltrol 170 and dyed White Oil. The calculated permeability of the micromodel was obtained for different systems assuming the effective length for viscous dissipation is equal to the initial bubble length. It was found that the calculated permeability had an increasing trend with increasing bubble length. Laboratory visualization experiments were conducted for air bubbles in White Oil (viscosity of 12 cP) to visualize the periodic nature of the flow of rising bubbles in a pore network. The motion of the air bubbles in saturated micromodel was video-recorded by a digital camera, reviewed and analyzed using PowerDVD ™11 software. An image of a bubble migrating in the porous medium was obtained by capturing a still frame at a specific time and was analyzed to determine the bubble shape, the exact positions of the bubble front and bubble tail during motion and, thus, the dynamic length of the bubble. A deformation in the shape of the bubble tail end was observed for long bubbles. The dynamic bubble lengths were larger than the static bubble lengths and showed an increasing trend when increasing the angle of inclination. The dynamic bubble lengths were used to recalculate the bubble velocity and permeability. A linear correlation was found for the average bubble velocity as a function of dynamic bubble length. Numerical simulation was performed by modifying an existing MATLAB® simulation for the rise velocity of a gas bubble and the induced pressure field while it migrates though porous media. The results showed that the rise velocity of a gas bubble is affected by the grid size of the pore network in the direction perpendicular to the bubble migration. In reality, this effect is demonstrated by the presence of other bubbles near the rising bubble in porous media. The simulation results showed good agreement with experimental data for long bubbles with high velocities. More work is required to improve the accuracy of simulation results for relatively large bubbles.
130

Studies in an externally irradiated immobilized catalyst bubble column photoreactor: mass transfer and activity evaluation.

Lee, Ivy Ai Ling, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Light intensity distribution studies in the heterogeneous photocatalytic reactors were carried out successfully with potassium ferrioxalate chemical actinometry, reproducible light intensity estimates of the irradiation source were obtained. The increased light intensity in the reactor system increased the absorption as determined by actinometry. It was found that reflectivity was a dependent variable but mesh opening area was an independent variable. The photocatalytic mineralization of dichoroacetic acid DCAA, in the presence of TiO2 immobilized on a plate in an externally irradiated bubble column photoreactor had been investigated. The mass transfer and activity evaluation were measured. It was found that increasing the catalyst thickness, increased the photoactivity until it reaches the optimum loading, further loading increase caused the reaction rate to remain constant. This phenomenon was observed with increased lamp power (intensity) and initial solute concentration. However, the catalyst activity was not influenced by the increasing concentration of dissolved oxygen. The reaction rate for DCAA photomineralization was expressed using the Langmuir-Hinsheldwood model.

Page generated in 0.0566 seconds