Spelling suggestions: "subject:"bulls ocho beam markets"" "subject:"bulls och3 beam markets""
1 |
Mutual fund performance in bull and bear markets : an empirical examination /Hamidani, Farhan Adam. January 1900 (has links)
Project (M.B.A.) - Simon Fraser University, 2004. / Theses (Faculty of Business Administration) / Simon Fraser University. MBA-GAWM Program. Senior supervisor: Dr. Robert R. Grauer.
|
2 |
Identificação e previsão de bull e bear markets : uma análise para o índice IbovespaRatnieks, Ianes January 2013 (has links)
O presente trabalho busca identificar bull e bear markets para o mercado financeiro brasileiro, especificamente para o índice Ibovespa, através das principais metodologias existentes na literatura: regras não paramétricas e modelos de mudança de regime markoviano. A primeira abordagem foi utilizada como benchmark para comparação com melhor modelo econométrico estimado pela segunda abordagem, visto que trata-se de um método ex-post de identificação. No tange aos modelos de mudança de regime markoviano, constatou-se que permitir regimes distintos também para a variância da série contribui para a identificação dos mesmos. Desta forma, o melhor modelo obtido fora o MSARMA(2,1)-2 para a série de retornos semanais do índice Ibovespa. O modelo foi capaz de identificar os principais eventos que impactaram a economia e o mercado financeiro brasileiro no período. Além disto, o modelo se mostrou útil para a tomada de decisão, visto que a estratégia de investimento, baseada na previsão um passo à frente do estado do mercado, foi capaz de preservar o capital do investidor, gerando um melhor desempenho do que na estratégia buy-and-hold de longo prazo. / This paper seeks to identify bull and bear markets in the brazilian stock market, specifically to the time series of the Ibovespa index, through the main methodologies present in literature: identification based on rules and Markov switching models. The first method was used as a benchmark to compare with the best regime switching model, since it is an ex-post method of identification. Modelling a Markov switching model with two regimes also for the variance of the process resulted in a better identification of the markets. Thus, the best Markov switching model estimated was theMSARMA(2,1)-2 to the time series of the Ibovespa weekly returns. The model was able to identify the main events that have impacted the brazilian economy and also the stock market in the period. Furthermore, the model proved its value in decision making, since in a investment strategy, based on the models one step ahead forecast about the regime of the market, it was able to preserve investor capital, generating a better performance than the buy-and-hold strategy.
|
3 |
Identificação e previsão de bull e bear markets : uma análise para o índice IbovespaRatnieks, Ianes January 2013 (has links)
O presente trabalho busca identificar bull e bear markets para o mercado financeiro brasileiro, especificamente para o índice Ibovespa, através das principais metodologias existentes na literatura: regras não paramétricas e modelos de mudança de regime markoviano. A primeira abordagem foi utilizada como benchmark para comparação com melhor modelo econométrico estimado pela segunda abordagem, visto que trata-se de um método ex-post de identificação. No tange aos modelos de mudança de regime markoviano, constatou-se que permitir regimes distintos também para a variância da série contribui para a identificação dos mesmos. Desta forma, o melhor modelo obtido fora o MSARMA(2,1)-2 para a série de retornos semanais do índice Ibovespa. O modelo foi capaz de identificar os principais eventos que impactaram a economia e o mercado financeiro brasileiro no período. Além disto, o modelo se mostrou útil para a tomada de decisão, visto que a estratégia de investimento, baseada na previsão um passo à frente do estado do mercado, foi capaz de preservar o capital do investidor, gerando um melhor desempenho do que na estratégia buy-and-hold de longo prazo. / This paper seeks to identify bull and bear markets in the brazilian stock market, specifically to the time series of the Ibovespa index, through the main methodologies present in literature: identification based on rules and Markov switching models. The first method was used as a benchmark to compare with the best regime switching model, since it is an ex-post method of identification. Modelling a Markov switching model with two regimes also for the variance of the process resulted in a better identification of the markets. Thus, the best Markov switching model estimated was theMSARMA(2,1)-2 to the time series of the Ibovespa weekly returns. The model was able to identify the main events that have impacted the brazilian economy and also the stock market in the period. Furthermore, the model proved its value in decision making, since in a investment strategy, based on the models one step ahead forecast about the regime of the market, it was able to preserve investor capital, generating a better performance than the buy-and-hold strategy.
|
4 |
Identificação e previsão de bull e bear markets : uma análise para o índice IbovespaRatnieks, Ianes January 2013 (has links)
O presente trabalho busca identificar bull e bear markets para o mercado financeiro brasileiro, especificamente para o índice Ibovespa, através das principais metodologias existentes na literatura: regras não paramétricas e modelos de mudança de regime markoviano. A primeira abordagem foi utilizada como benchmark para comparação com melhor modelo econométrico estimado pela segunda abordagem, visto que trata-se de um método ex-post de identificação. No tange aos modelos de mudança de regime markoviano, constatou-se que permitir regimes distintos também para a variância da série contribui para a identificação dos mesmos. Desta forma, o melhor modelo obtido fora o MSARMA(2,1)-2 para a série de retornos semanais do índice Ibovespa. O modelo foi capaz de identificar os principais eventos que impactaram a economia e o mercado financeiro brasileiro no período. Além disto, o modelo se mostrou útil para a tomada de decisão, visto que a estratégia de investimento, baseada na previsão um passo à frente do estado do mercado, foi capaz de preservar o capital do investidor, gerando um melhor desempenho do que na estratégia buy-and-hold de longo prazo. / This paper seeks to identify bull and bear markets in the brazilian stock market, specifically to the time series of the Ibovespa index, through the main methodologies present in literature: identification based on rules and Markov switching models. The first method was used as a benchmark to compare with the best regime switching model, since it is an ex-post method of identification. Modelling a Markov switching model with two regimes also for the variance of the process resulted in a better identification of the markets. Thus, the best Markov switching model estimated was theMSARMA(2,1)-2 to the time series of the Ibovespa weekly returns. The model was able to identify the main events that have impacted the brazilian economy and also the stock market in the period. Furthermore, the model proved its value in decision making, since in a investment strategy, based on the models one step ahead forecast about the regime of the market, it was able to preserve investor capital, generating a better performance than the buy-and-hold strategy.
|
5 |
Börsintroduktioner, påverkar antalet finansiell prestation?Ångman, Albin, Högström, Jonatan January 2022 (has links)
Studier visar på att företag väljer att underprissätta sina aktier vid en börsnotering, det vill säga att aktiens pris fastställs till lägre än vad det verkliga värdet är för att locka icke informerade investerare och för att säkerställa full täckningsgrad. Graden av underprissättning varierar beroende på om det är en het eller kall period av börsnoteringar. Tidigare forskning har främst studerat börsnoteringars prestation ur ett långsiktigt perspektiv där börsnoteringar generellt presterar sämre än marknaden. Ett fåtal studier har även undersökt börsnoteringars utveckling på kort sikt, där noteringarna i stället visar på positiv prestation. Med ett ökat allmänt intresse för börsen de senaste åren och även en markant ökning i antalet genomförda börsintroduktioner så fann författarna till studien ett forsknings gap på den svenska marknaden. Syftet med denna studie är att undersöka huruvida antalet börsintroduktioner på marknaden påverkar finansiell prestation på kort sikt, mätt i aktiekursutveckling. Studien undersöker genomförda börsnoteringar på marknadsplatsen Nasdaq Stockholm och handelsplattformen First North under perioden2012–2021. För att undersöka om antalet börsnoteringar har någon påverkan på finansiell prestation så klassificerades perioder av börsnoteringar som antingen heta, normala eller kalla. Studiens syfte utmynnade i två forskningsfrågor och den huvudsakliga forskningsfrågan lyder: Har antalet börsintroduktioner på marknaden någon påverkan på deras kortsiktiga finansiella prestation? Den sekundära forskningsfrågan lyder: Vilken av noteringsperioderna het och kall ger högst avkastning på kort sikt? Studien är kvantitativ och har en deduktiv ansats, således är syftet inte att generera nya teorier utan i stället använda befintliga teorier som är relevanta för ämnesområdet. Studien utgår från tre teorier, vilka är den effektiva marknadshypotesen, Winner’s Curse och signalteorin, där den effektiva marknadshypotesen är den primära teorin för studien som legat till grund för hypotesprövningar. Winner’s Curse och signalteorin har fungerat som komplement och har använts som stöd för de diskussioner som förts i studiens analyskapitel. Resultatet påvisar att det finns skillnader i den genomsnittliga abnormala avkastningen mellan heta och kalla perioder vilket kan tyda på att antalet har en påverkan, men dessa skillnader kunde inte statistiskt säkerställas. Resultatet visade att den genomsnittliga abnormala avkastningen för heta perioder var 4,034 % och för kalla perioder 0,349 %. Detta resultat besvarar forskningsfråga två, där heta perioder genererar högst abnormal avkastning på kort sikt. Eftersom resultaten inte gått att statistiskt säkerställa finner studien inga bevis mot den effektiva marknadshypotesen i sin svaga och semistarka form. I studiens robusthetstest undersöktes också om det fanns skillnader mellan de två inkluderade listorna Nasdaq Stockholms och First Norths genomsnittliga abnormala avkastning. Det uppmättes statistiskt signifikanta skillnader, där signifikansnivån var satt till 5 %, vid det tillfället då robusthetstesterna genomfördes. Det resultatet finner stöd för att avfärda den effektiva marknadshypotesen, även i sina svagare former, där skillnaderna till viss del kan förklaras utifrån signalteorin och Winner’s Curse.
|
6 |
La détection des retournements du marché actions américain / Detecting the reversals of the American stock marketZeboulon, Arnaud 08 October 2015 (has links)
Le but de cette thèse est de construire un modèle de détection des changements de phase -passages de marché haussier à baissier et vice versa - du marché des actions américaines cotées, en utilisant un nombre relativement important de variables à la fois fondamentales (macroéconomiques et microéconomiques) et issues de l’analyse technique.Le modèle statistique retenu est la régression logistique statique, avec un retard pour les variables explicatives allant de zéro à trois mois. Les huit variables les plus significatives parmi vingt candidatesont été sélectionnées à partir des données mensuelles du S&P500 sur la période 1963-2003. Le modèle obtenu a été testé sur 2004-2013 et sa performance a été supérieure à celles de la stratégie Buy & Holdet d’un modèle univarié utilisant la variable ayant le plus fort pouvoir de détection - ce dernier modèle ayant fait l’objet d’une étude dans la littérature.Il a également été montré que des variables non encore considérées dans la littérature - la moyenne mobile sur les six derniers mois des créations nettes d’emplois non-agricoles, la base monétaire et le Composite Leading Indicator de l’OCDE - ont un pouvoir de détection significatif pour notre problématique. D'autre part, la variable binaire indiquant la position du S&P500 par rapport à sa moyenne mobile des dix derniers mois - variable de type analyse technique - a un pouvoir prédictif beaucoup plus élevé que les variables fondamentales étudiées. Enfin, les deux autres variables les plus statistiquement significatives sont macroéconomiques : l'écart entre les taux à dix ans des T-bonds et à trois mois des T-bills et la moyenne mobile des créations d’emplois non-agricoles. / The goal of this thesis is to build a model capable of detecting the reversals - shift from bull market to bear market or vice versa - of the American stock market, by using a relatively large number of explanatory variables, both of fundamental (macroeconomic and microeconomic) and of ‘technical analysis’ types.The statistical model used is static logistic regression, with lags for the independent variables ranging from zero to three months. Starting with twenty variables, the eight most significant ones have been selected on a training set consisting of monthly data of the S&P500 between 1963 and 2003. There sulting model has been tested over the 2004-2013 period and its performance was better than those of a buy & hold strategy and of a univariate model based on the variable with the highest predictive power – the latter model being the focus of a paper in the current literature. Another contribution of the thesis is that some variables not yet studied in the literature – the six month moving average of net non-farm job creations, the monetary base and the OECD Composite Leading Indicator – are statistically significant for our problem. Moreover, the predictive power of the binary variable indicating whether the S&P500 is above or below its ten-month moving average – a technical analysis variable – is much higher than that of the fundamental variables which have been considered. Finally, the two other most significant variables are macroeconomic ones: the spread between the ten-year T-bond and three-month T-bill rates and the moving average of non-farm jobs creations.
|
Page generated in 0.124 seconds