• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Reconfigurable Device for GALS Systems

Sciaraffa, Rocco January 2018 (has links)
Globally Asynchronous Locally Synchronous (GALS) Field-Programmable Gate Array (FPGA) are composed of standard synchronous reconfigurable logic islands that communicate with each other via an asynchronous means. Past research into fully asynchronous FPGA has demonstrated high throughput and reliability adopting dual-rail encoding. GALS FPGAs have been proposed, relying on bundled-data encoding and fixed asynchronous communication between synchronous islands. This thesis proposes a new GALS FPGA architecture with fully reconfigurable asynchronous fabric, that relies on coarse-grained Configurable Logic Blocks (CLBs) to improve the communication capability of the device. Through datapath dedicated elements, asynchronous pipelines are efficiently mapped onto the device. The architecture is presented as well as the customized tool flow needed to compile Verilog for this new coarse-grained reconfigurable circuit.The main purpose of this thesis is to map communication-purpose user-circuits on the proposed asynchronous fabric and evaluate their performance. The benchmark circuits target the design of a Networkon-Chip (NoC) router and employ two-phase bundled-data protocol. The results are obtained through simulation and compared with the performances of the same circuits on a fine-grained classical FPGA style. The proposed architecture achieves up to 3.2x higher throughput and 2.9x lower latency than the classical one. The results show that the coarse-grained style efficiently maps asynchronous communication circuits, and it may be the starting point for future reconfigurable GALS systems. Future work should focus on improving the back-end synthesis and evaluating the FPGA GALS system as a whole. / Globala Asynkrona Lokalt Synkrona (GALS) FPGAer består av standardiserade synkrona rekonfigurerbara logiska öar som kommunicerar med varandra på ett asynkront sätt. Tidigare forskning om helt asynkrona FPGAer har demonstrerat att hög genomströmning och tillförlitlighet kan erhållas mha sk dual-rail kodning. GALS FPGA har också föreslagits, där man istället förlitar sig på kodad data och fast asynkron kommunikation mellan synkrona öar. Denna avhandling föreslår en ny GALS FPGA-arkitektur med en omkonfigurerbar asynkron struktur, bestående av sk Coarse-grained CLBs för att förbättra kommunikationsförmågan på enheten. Genom att datavägarna använder sig av dedikerade element, kan asynkrona pipelines mappas effektivt på enheten. Arkitekturen presenteras liksom det verktygsflöde som behövs för att kompilera Verilog för denna nya grovkornigt omkonfigurerbara krets.Huvudsyftet med denna avhandling är att mappa kommunikationskretsar på den föreslagna asynkrona strukturen och utvärdera dess prestanda. Referenskretsarna som används för utvärdering är en NoC router som använder sig av ett tvåfas kommunikationsprotokoll. Resultaten erhålls genom simulering och jämförs med prestanda av samma krets implementerad i en finkornig klassisk FPGA-stil. Den föreslagna arkitekturen uppnår ca 3.2x högre genomströmning och 2.9x lägre latens än den klassiska. Resultaten visar att en grovkornig stil kan mappa asynkrona kommunikationskretsar på ett effektivt sätt, och att det kan vara en bra utgångspunkt för framtida omkonfigurerbara GALS-system.Framtida arbete bör fokusera på att förbättra back-end-syntesen och att utvärdera FPGA GALS-systemet i sin helhet.
2

ANALÝZA MOŽNOSTÍ SIMULÁCIE A IMPLEMENTÁCIE AUTOSYNCHRÓNNYCH SUBSYSTÉMOV V OBVODOCH VLSI / SIMULATION AND IMPLEMENTATION ANALYSIS OF THE AUTOSYNCHRONOUS SUBSYSTEMS IN VLSI DEVICE

Kováč, Michal January 2010 (has links)
This thesis focuses on problem-solution analysis of synchronous digital circuits; the results of which are autosynchronous circuit design methodology, timing parameter definitions based on simulation models and constraint settings. The RTL transformation of the synchronous state machine in VHDL language to an autosynchronous state machine was created with minimal modifications for the simple design of these circuits. Following this, a comparison of the transformed state machines with their synchronous originals in parameters such as chip area, current consumption and timing specification domain is introduced. The summation of this thesis displays a theoretical comparison of several types of synchronization (synchronous, autosynchronous, fundamental asynchronous, EAIC, Bundled-data, Dual-rail) which are presented on the single state machine example with the same technology parameters.
3

The impact of voltage scaling over delay elements with focus on post-silicon tests

Heck, Guilherme 09 March 2018 (has links)
Submitted by PPG Ci?ncia da Computa??o (ppgcc@pucrs.br) on 2018-08-22T17:30:17Z No. of bitstreams: 1 GUILHERME HECK_TES.pdf: 7520580 bytes, checksum: 0abf48b5a455b7c50fa0b30109a1ee57 (MD5) / Approved for entry into archive by Sheila Dias (sheila.dias@pucrs.br) on 2018-08-23T12:09:32Z (GMT) No. of bitstreams: 1 GUILHERME HECK_TES.pdf: 7520580 bytes, checksum: 0abf48b5a455b7c50fa0b30109a1ee57 (MD5) / Made available in DSpace on 2018-08-23T13:31:43Z (GMT). No. of bitstreams: 1 GUILHERME HECK_TES.pdf: 7520580 bytes, checksum: 0abf48b5a455b7c50fa0b30109a1ee57 (MD5) Previous issue date: 2018-03-09 / A demanda sem precedentes por poderosos dispositivos de processamento gerou quebras consecutivas de paradigma de projeto de circuito na ?rea de Circuitos Integrados (CIs). O uso de tecnologia submicrom?trica profunda aumenta a densidade de integra??o a n?veis nunca vistos antes. No entanto, com CIs mais densos, a inclina??o do rel?gio e outros efeitos requerem compensa??es em design s?ncrono, o que pode aumentar a ?rea e o consumo de energia a valores inaceit?veis. Como alternativa, o paradigma ass?ncrono est? re-emergindo, focado na efici?ncia de energia. Entre os modelos cl?ssicos de projeto ass?ncrono, o Empacotamento-de-Dados (ED) se destaca pela sua capacidade de fornecer alto desempenho, reduzir a pot?ncia e obter resultados de ?rea semelhante ? dos modelos s?ncronos. Diferentemente dos modelos mais robustos de quase-atraso insens?vel, uma outra classe comum de modelos para implementar circuitos ass?ncronos, circuitos ED requerem o uso extensivo de Elementos de Atraso (EAs) para garantir a correta funcionalidade. No entanto, todos os circuitos s?o afetados por varia??es de Processo, Tens?o e Temperatura (PTT), incluindo a L?gica Combinacional (LC) em ED impondo margem em elementos de atraso. Al?m disso, projetos atuais usam escalonamento de tens?o para melhorar a efici?ncia de energia, o que afeta o atraso diferentemente em LCs e EAs adicionando mais margem em EAs. Um novo modelo baseado em ED chamado Blade usa o conceito de resili?ncia como uma esperan?a para evitar a margem de atraso causada por PTT e escalonamento de tens?o. Contudo, o uso de dois elementos de atraso ir? representar mais margens e mais tempo de teste no circuito final. Assim, este trabalho mostra uma an?lise do comportamento de elementos de atraso sob escalonamento de tens?o e o impacto em testes p?s-sil?cio. Ele introduz um novo termo para determinar o impacto da escala de tens?o sobre os elementos de atraso e tamb?m a compara??o entre os EAs mais utilizados em projetos ED usando esta nova m?trica. Uma an?lise de testes em modelos ED e Blade ? apresentada e o impacto da escala de tens?o nestes projetos ? analisado. Finalmente, um novo elemento de atraso ? proposto focando na redu??o de margem e redu??o no tempo de teste para o modelo Blade. / The unprecedented demand for powerful processing devices has generated consecutive circuit design paradigm breaks in the Integrated Circuits (ICs) arena. The use of deep submicron technology increases the integration density to levels never seen before. However, with denser ICs, clock skew and other effects require compensations in synchronous design, which can increase area overhead and power consumption to unacceptable values. As an alternative, the asynchronous paradigm is re-emerging, focused on power efficiency. Among classical asynchronous design templates, the Bundled-Data (BD) one stands off for its capability to provide high performance, reduce power and achieve area results similar to that of synchronous designs. Unlike the more robust Quasi-Delay Insensitive (QDI) templates, another common class of templates to implement asynchronous circuits, BD circuits require the extensive use of Delay Elements (DEs) to guarantee correct functionality. However, all circuits are affected by Process, Voltage and Temperature (PVT) variations, including the Combinational Logic (CL) on BD imposing margin on delay elements. In addition, current designs use voltage scaling to improve power efficiency, which impacts the delay differently in CLs and DEs adding more margin in DEs. A new template based on BD called Blade uses resiliency concept as a hope to avoid the delay margin caused by PVT and voltage scaling. Although, the use of two delay elements will represents more margins and extra test time on final circuit. So, this work shows an analysis of delay elements behavior under voltage scaling and the impact on post-silicon tests. It introduces a new term to determine the voltage scaling impact on delay elements and also the comparison between the most used DEs on BD designs using this novel metric. An analysis of tests in BD and Blade templates are presented and the impact of voltage scaling in these designs is analyzed. Finally, a novel delay element is proposed focusing in margin reduction and reduction in test time for Blade template.

Page generated in 0.0259 seconds