• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 21
  • 13
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 113
  • 113
  • 23
  • 22
  • 21
  • 20
  • 19
  • 18
  • 17
  • 16
  • 14
  • 13
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The BTB/POZ Transcription Factor Miz-1 Is Required To Regulate The Commitment, Survival And Differentiation Of Early B And T Cell Lineages

Saba, Ingrid 01 1900 (has links)
Les lymphocytes B et T sont issus de cellules progénitrices lymphoïdes de la moelle osseuse qui se différencient grâce à l’action de facteurs de transcription, cytokines et voies de signalisation, dont l’interleukine-7 (IL-7)/IL-7 récepteur (IL-7R). Le facteur de transcription c-Myc est exprimé par les cellules lymphoïdes et contrôle leur croissance et leur différenciation. Cette régulation transcriptionnelle peut être coordonnée par le complexe c-Myc/Myc-Interacting Zinc finger protein-1 (Miz-1). Le but de ce projet était de comprendre les mécanismes qui impliquent Miz-1 et le complexe c-Myc/Miz-1 dans le développement des lymphocytes B et T. Pour réaliser ce projet, des souris déficientes pour le domaine de transactivation de Miz-1 (Miz-1POZ) et des souris à allèles mutantes pour c-MycV394D, mutation qui empêche l’interaction avec Miz-1, ont été générées. La caractérisation des souris Miz 1POZ a démontré que l’inactivation de Miz-1 perturbe le développement des lymphocytes B et T aux stades précoces de leur différenciation qui dépend de l’IL-7. L’analyse de la cascade de signalisation IL-7/IL-7R a montré que ces cellules surexpriment la protéine inhibitrice SOCS1 qui empêche la phosphorylation de STAT5 et perturbe la régulation à la hausse de la protéine de survie Bcl-2. De plus, Miz-1 se lie directement au promoteur de SOCS1 et contrôle son activité. En plus de contrôler l’axe IL-7/IL-7R/STAT5/Bcl-2 spécifiquement aux stades précoces du développement afin d’assurer la survie des progéniteurs B et T, Miz-1 régule l’axe EBF/Pax-5/Rag-1/2 dans les cellules B afin de coordonner les signaux nécessaires pour la différenciation des cellules immatures. La caractérisation des souris c-MycV394D a montré, quant à elle, que les fonctions de Miz-1 dans les cellules B et T semblent indépendantes de c-Myc. Les cellules T des souris Miz-1POZ ont un défaut de différenciation additionnel au niveau de la -sélection, étape où les signaux initiés par le TCR remplacent ceux induits par IL-7 pour assurer la prolifération et la différenciation des thymocytes en stades plus matures. À cette étape du développement, une forme fonctionnelle de Miz-1 semble être requise pour contrôler le niveau d’activation de la voie p53, induite lors du processus de réarrangement V(D)J du TCR. L’expression de gènes pro-apoptotiques PUMA, NOXA, Bax et du régulateur de cycle cellulaire p21CIP1 est régulée à la hausse dans les cellules des souris Miz-1POZ. Ceci provoque un débalancement pro-apoptotique qui empêche la progression du cycle cellulaire des cellules TCR-positives. La survie des cellules peut être rétablie à ce stade de différenciation en assurant une coordination adéquate entre les signaux initiés par l’introduction d’un TCR transgénique et d’un transgène codant pour la protéine Bcl-2. En conclusion, ces études ont montré que Miz-1 intervient à deux niveaux du développement lymphoïde: l’un précoce en contrôlant la signalisation induite par l’IL-7 dans les cellules B et T, en plus de l’axe EBF/Pax-5/Rag-1/2 dans les cellules B; et l’autre tardif, en coordonnant les signaux de survie issus par le TCR et p53 dans les cellules T. Étant donné que les thymocytes et lymphocytes B immatures sont sujets à plusieurs rondes de prolifération, ces études serviront à mieux comprendre l’implication des régulateurs du cycle cellulaire comme c-Myc et Miz-1 dans la génération des signaux nécessaires à la différenciation non aberrante et à la survie des ces cellules. Enfin, les modèles expérimentaux, souris déficientes ou à allèles mutantes, utilisés pour ce travail permettront de mieux définir les bases moléculaires de la transformation maligne des lymphocytes B et T et de révéler les mécanismes conduisant au lymphome. / Signaling pathways control the differentiation and proliferation of blood cells, like B and T lymphocytes. They converge into regulating the activity of transcription factors that influence ultimately gene expression patterns. The transcription factor c-Myc is a central regulator of cellular proliferation and growth, and its deregulated expression has been demonstrated to be involved in many types of cancers, in particular lymphoma. Recent studies have shown that repression by c-Myc can be mediated by a complex formed with the BTB/POZ domain transcription factor Miz-1 (Myc Interacting Zinc finger protein-1). Given that both c-Myc and Miz-1 proteins are expressed in lymphoid precursors and since c-Myc has been shown to be important for B- and T-cell development, the aim of this thesis was to investigate the role of Miz-1 and the c-Myc/Miz-1 complex in regulating B and T cell survival, commitment and differentiation. To do so, mice expressing a non-functional Miz-1 protein lacking the BTB/POZ domain (Miz-1POZ) and knock-in mice expressing a mutant c-MycV394D allele that no longer interacts with Miz-1 were generated. B- and T-cell development requires the coordinated action of transcription factors and cytokines, in particular interleukin-7 (IL-7). The studies presented in this work demonstrated that mice deficient for the BTB/POZ domain of transcription factor Miz-1 almost entirely lack follicular B cells and T cells, since their progenitors fail to activate the JAK/STAT5 pathway and to up-regulate Bcl-2 upon IL-7 stimulation. Miz-1 exerts a dual role in the IL-7 receptor (IL-7R) pathway by directly repressing the JAK inhibitor SOCS1 and by activating Bcl-2 expression. In B cells, a functional form of Miz-1 is also required for the proper expression of early B cell genes like E2A and EBF. These data suggest that Miz-1 represents a new regulatory element of early B- and T-cell differentiation required for the regulation of the IL-7/IL-7R/STAT5/Bcl-2 axis by monitoring SOCS1 for survival and by regulating the EBF/Pax-5/Rag-1/2 axis for the proper commitment and differentiation of the B-cell lineage. The regulation exerted by Miz-1 in B and T cells is mostly likely independent of its interacting partner c-Myc, and seems specifically linked to the BTB/POZ domain of Miz-1. Mice deficient for the BTB/POZ domain of Miz-1 have additionally a severe differentiation block at the pre-T cell “-selection” checkpoint. Miz-1 deficient pre-T cells are highly apoptotic and do show cell cycle defects. This concurs with enhanced expression of p53-target genes such as p21CIP1, Bax, PUMA and Noxa, most likely induced by the DNA double-strand breaks generated during the V(D)J recombination of the TCR. Only the co-expression of rearranged TCR and Bcl-2 fully rescued Miz-1-deficient cell numbers and enabled them to differentiate into TCR+ cells. These data suggest that Miz-1 is required for both the regulation of the p53 response and proper expression of the pre-TCR to support the proliferative burst of pre-T cells. In conclusion, the studies presented in this thesis revealed the so far unknown implication of Miz-1 in B- and T-cell development. More specifically, Miz-1 exerts early regulatory functions by monitoring the IL-7/IL-7R signaling in B and T cells. It regulates later stages of differentiation by controlling the EBF/Pax-5/Rag-1/2 in B cells and the TCR expression and the p53 response in T cells. These studies and the generated mice model (conditional knock-out and knock-in) will help characterize the implications of transcription factors that have been causally implicated in the altered genetic programming found in hematopoietic malignancies due to their capacities to regulate cell cycle. Ultimately the characterization of Miz-1 and c-Myc functions in B and T cells will help better understand the mechanisms responsible for the emergence of leukemia and lymphoma.
42

Functional characterization of the alternative reading frame protein p14ARF /

Lindström, Mikael, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 5 uppsatser.
43

Structure and function in c-Myc and Grx4 : two key proteins involved in transcriptional activation and oxidative stress /

Fladvad, Malin, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2006. / Härtill 5 uppsatser.
44

Efeitos de ACTH, PMA e dcAMP na expressão de genes das famílias FOS e JUN do gene C-MYC e na atividade do fator de transcrição AP-1 em células adrenocorticais Y-1. / Effects of ACTH, PMA and dcAMP on fos, jun and c-myc gene expression and AP-1 transcription factor activity control in Y-1 adrenocortical cells

Ana Paula Lepique 04 November 1996 (has links)
As células Y-1 pertencem a uma linhagem clonal de células funcionais de córtex adrenal de camundongo, que respondem a ACTH. Em células Y-1, ACTH promove a esteroidogênese (função) e tem efeitos regulatórios complexos na transição G0→G1→S do ciclo celular. ACTH promove a transição G0→G1, mas inibe a transição G1→S. É possível que a regulação do ciclo celular por ACTH seja mediada pelo controle da expressão dos proto-oncogenes das famílias fos, jun e myc. Nosso laboratório mostrou, anteriormente, que ACTH induz a expressão dos genes fos e jun, mas inibe c-myc. O objetivo deste trabalho foi identificar pontos de controle na expressão dos genes fos, jun e myc e na atividade dos fatores de transcrição AP-1 (dímeros da proteínas Fos e Jun) por ACTH, derivados de cAMP (ativadores de PKA), PMA (ativador de PKC) e FCS (soro fetal bovino). ACTH, PMA e dcAMP aumentam a atividade de ligação de AP-1 a DNA, independentemente de síntese protéica. Ensaios de elongação de cadeia nascente de RNA (run off transcription) mostram que ACTH, PMA e FCS são fortes indutores de c-fos, c-jun e junB, enquanto dcAMP induz apenas c-fos e junB. Hibridizações Northern permitiram estimar a meia-vida dos mRNAs de c-fos e c-jun em 30 min, independentemente do tratamento com ACTH ou PMA. Diferentemente de c-fos, o mRNA de fosB é superinduzido por ActinomicinaD em células Y-1 tratadas com ACTH e PMA. / The Y-1 cells belong to a clonal lineage of functional mouse adrenocortical cells, which are responsive to ACTH. In Y-1 cells, ACTH promotes esteroidogenesis (function) and has complex effects on the G0→G1→S transition of the Y-1 cell cycle. ACTH induces the G0→G1 transition but inhibits the G1+S transition. Probably, the cell cycle regulation by ACTH is mediated by the expression control of the proto-oncogenes from the fos, jun and myc families. Our laboratory has previously shown that ACTH induces the fos and jun genes expression, but inhibits c-myc expression. The target of this work was to identify control points in the fos, jun and myc genes expression and in the AP-1 transcription factors (Fos and Jun proteins dimers) by ACTH, cAMP derivatives (PKA activators), PMA (PKC activator) and FCS (Fetal Calf Serum). ACTH, PMA and dcAMP raise the AP-1 DNA binding activity, independently of protein synthesis. Run off transcription assays show that ACTH, PMA and FCS are strong c-fos, c-jun and junB inducers, while dcAMP induces only c-fos and junB. Northern hybridisations allowed us to estimate the half life of the fos and jun mRNAs in about 30 min, independently of ACTH or PMA treatment. Differently of c-fos, fosB mRNA is superinduced by ActinomicinD treatment in Y-1 cells treated with ACTH or PMA.
45

Der Einfluss adulter Stammzellen auf die Aktivierung von Kardiomyozyten im in-vitro Modell: Der Einfluss adulter Stammzellen auf die Aktivierung von Kardiomyozyten im in-vitro Modell

Röske, Fabian 30 September 2014 (has links)
Während der letzten Jahre zeigten einige Studien, dass die Behandlung mit Knochenmark- Stammzellen (KMSZ) eine vielversprechende neue Therapieoption für den geschädigten Herzmuskel darstellen könnte. In dieser Arbeit wurde untersucht, ob es unter Behandlung mit Stammzellen zu einer zellulären Antwort in angezüchteten Kardiomyozyten (KMZ) kommt. Dafür wurden subkonfluente Kulturen aus Herzmuskelzellen von neonatalen Ratten für drei Tage mit Vybrant CM-DiI-markierten, sternalen humanen Knochenmarkstammzellen co-kultiviert. Im Anschluss wurden immunohistochemische Färbungen sowie eine quantitative Analyse mittels Western Blot für das Protoonkogen c-Myc durchgeführt. Des Weiteren wurde die Dichte der Beta-Adrenozeptoren unter Anwendung einer Histoautoradiographie mittels [125I]- iodocyanopindolol-Bindung analysiert. Die Auswertung der Immunohistochemie und der Western Blots zeigte eine signifikante Erhöhung der Expression von c-Myc in den Kardiomyozyten, welche in naher Umgebung der Stammzellen lagen. Dieser Effekt war direkt abhängig von der Entfernung der KMZ zur SZ. Die Histoautoradiographie zeigte eine signifikant höhere Beta-Rezeptor-Dichte in Kardiomyozyten in direkter Nähe zur Stammzelle. Mit steigender Entfernung von der Stammzelle verringerte sich die Rezeptordichte. Somit konnte gezeigt werden, dass eine kleine Anzahl von Knochenmark-Stammzellen ausreicht, um eine große Zahl von Kardiomyozyten zu beeinflussen, indem eine intrazelluläre Signalkaskade über c-Myc aktiviert und die Anzahl der Beta-Adrenozeptoren erhöht wird.
46

Investigation of Myc-regulated Long Non-coding RNAs in Cell Cycle and Myc-dependent Transformation

MacDougall, Matthew Steven 15 November 2013 (has links)
Myc deregulation critically contributes to many cancer etiologies. Recent work suggests that Myc and its direct interactors can confer a distinct epigenetic state. Our goal is to better understand the Myc-conferred epigenetic status of cells. We have previously identified the long non-coding RNA (lncRNA), H19, as a target of Myc regulation and shown it to be important for transformation in lung and breast cells. These results prompted further analysis to identify similarly important Myc-regulated lncRNAs. Myc-regulated lncRNAs associated with the cell cycle and transformation have been identified by microarray analysis. A small number of candidate lncRNAs that were differentially expressed in both the cell cycle and transformation have been validated. Given the increasing importance of lncRNAs and epigenetics to cancer biology, the discovery of Myc-induced, growth associated lncRNAs could provide insight into the mechanisms behind Myc-related epigenetic signatures in both normal and disease states.
47

Synergism of IL10R and TLR9 signaling affects gene expression, proliferation and metabolism in B cells: A comparative study of STAT3/NF-kB and c-Myc mediated effects

Feist, Maren 19 September 2016 (has links)
No description available.
48

Investigating the role of mRNA capping enzyme in C-MYC function

Lombardi, Olivia January 2017 (has links)
C-MYC is a transcription factor and a potent driver of many human cancers. In addition to regulating transcription, C-MYC promotes formation of the mRNA cap which is important for transcript maturation and translation. However, the mechanistic details of C-MYC-dependent mRNA capping are not fully understood. Since anti-cancer strategies to directly target the C-MYC protein have had limited success, enzymatic co-factors or effectors of C-MYC present attractive alternatives for therapeutic intervention of C-MYC-driven cancers. mRNA capping enzyme (CE) initiates mRNA cap formation by catalysing the linkage of inverted guanosine via a triphosphate bridge to the first transcribed nucleotide. The involvement of CE in C-MYC-dependent mRNA capping and C-MYC function has not yet been explored. Therefore, I sought to determine whether C-MYC regulates CE, and whether CE is required for C-MYC function. I found that C-MYC promotes CE recruitment to RNA polymerase II (RNA pol II) transcription complexes and to regions proximal to transcription start sites on chromatin. Consistently, C-MYC increases RNA pol II-associated CE activity. Interestingly, cells driven by C-MYC are highly dependent on CE for C-MYC-induced target gene expression and cell transformation, but only when C-MYC is overexpressed; C-MYC-independent cells or cells retaining normal control of C-MYC expression are insensitive to CE inhibition. C-MYC expression is also dependent on CE. Taken together, I present a bidirectional regulatory relationship between C-MYC and CE which is potentially therapeutically relevant. Studies here strongly suggest that inhibiting CE is an attractive strategy to selectively target cancer cells which have acquired deregulated C-MYC.
49

Investigation of hPin1 mediated phosphorylation dependency in degradation control of c-Myc oncoprotein

Johansson, Malin January 2012 (has links)
Cancer is the main cause of death in economically developed countries and the second leading cause of death in developing countries. Along with today’s knowledge that more than two hundred different diseases lie in the category of this prognosis there is an urge for more detailed and case-specific treatments to replace the dramatic actions of available radiation- and chemotherapy, which in many cases do not make a difference between healthy and cancer cells. The transcription factor and onco-protein c-Myc has, after being extensively studied during the past decades, become a prognostic marker for almost all cancer forms known. Still, many questions remain regarding how c-Myc interacts with its many different target proteins involved in cell-cycle regulation, proliferation and apoptosis. Current cell biology states that one of the regulating proteins, hPin1, interacts with c-Myc in a phosphorylation-dependent manner which appears to direct the correct timing of c-Myc activation and degradation through the ubiquitin/proteasome-pathway. The critical phosphorylation sites, T58 and S62, are located in the Myc-Box-I (MBI) region, a highly conserved sequence strongly coupled to aggressive tumourigenesis by hotspot mutations. Interestingly, preliminary results in the Sunnerhagen group suggested that MBI alone did not bind hPin1, suggesting hPin1 targeting a site distal from the residues to be phosphorylated. In this thesis, results from Surface Plasmon Resonance (SPR) and Nuclear Magnetic Resonance (NMR) show that the docking WW-domain of hPin1 binds unphosphorylated c-Myc at a region distal from the phosphorylation site, including residues 13-34. Furthermore, SPR experiments revealed that hPin1 binds unphosphorylated c-Myc with apparently greater affinity and with much slower kinetics than phosphorylated c-Myc. Thus, hPin1 recognition and interaction with c-Myc appears not to be dependent on phosphorylation of c-Myc prior binding. The newly identified binding region of c-Myc, located N-terminal of MBI, may further increase the understanding of protein degradation control and c-Myc function. The studies presented in this thesis provide a brick in the puzzle of c-Myc and hPin1 coupled oncogenesis for further development of new therapeutic strategies.
50

Novel experimental targeted therapy in neuroblastoma

Segerström, Lova Perup, January 2009 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2009.

Page generated in 0.0318 seconds