Spelling suggestions: "subject:"care following model""
11 |
Calibration of IDM Car Following Model with Evolutionary AlgorithmYang, Zhimin 11 January 2024 (has links)
Car following (CF) behaviour modelling has made significant progress in both traffic engi-neering and traffic psychology during recent decades. Autonomous vehicles (AVs) have been demonstrated to optimise traffic flow and increase traffic stability. Consequently, sever-al car-following models have been proposed based on various car following criteria, leading to a range of model parameter sets. In traffic engineering, Intelligent Driving Model (IDM) are commonly used as microscopic traffic flow models to simulate a single vehicle's behav-iour on a road. Observational data can be employed to parameter calibrate IDM models, which enhances their practicality for real-world applications. As a result, the calibration of model parameters is crucial in traffic simulation research and typically involves solving an optimization problem. Within the given context, the Nelder-Mead(NM)algorithm, particle swarm optimization (PSO) algorithm and genetic algorithm (GA) are utilized in this study for parameterizing the IDM model, using abundant trajectory data from five different road conditions. The study further examines the effects of various algorithms on the IDM model in different road sections, providing useful insights for traffic simulation and optimization.:Table of Contents
CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND AND MOTIVATION 1
1.2 STRUCTURE OF THE WORK 3
CHAPTER 2 BACKGROUND AND RELATED WORK 4
2.1 CAR-FOLLOWING MODELS 4
2.1.1 General Motors model and Gazis-Herman-Rothery model 5
2.1.2 Optimal velocity model and extended models 6
2.1.3 Safety distance or collision avoidance models 7
2.1.4 Physiology-psychology models 8
2.1.5 Intelligent Driver model 10
2.2 CALIBRATION OF CAR-FOLLOWING MODEL 12
2.2.1 Statistical Methods 13
2.2.2 Optimization Algorithms 14
2.3 TRAJECTORY DATA 21
2.3.1 Requirements of Experimental Data 22
2.3.2 Data Collection Techniques 22
2.3.3 Collected Experimental Data 24
CHAPTER 3 EXPERIMENTS AND RESULTS 28
3.1 CALIBRATION PROCESS 28
3.1.1 Objective Function 29
3.1.2 Errors Analysis 30
3.2 SOFTWARE AND METHODOLOGY 30
3.3 NM RESULTS 30
3.4 PSO RESULTS 37
3.4.1 PSO Calibrator 37
3.4.2 PSO Results 44
3.5 GA RESULTS 51
3.6 OPTIMIZATION PERFORMANCE ANALYSIS 58
CHAPTER 4 CONCLUSION 60
REFERENCES 62
|
12 |
Utilisation de la conduite coopérative pour la régulation de trafic dans une intersection / Using the technology of cooperative driving for the traffic control at isolated intersectionWu, Jia 20 July 2011 (has links)
L’objectif de ce travail est d’exploiter les potentialités offertes par la conduite coopérative afin de fluidifier le trafic au niveau des intersections isolées. Pour ce faire, nous avons proposé un nouveau système de régulation au sein des intersections en s’inspirant du principe de l’intersection autonome. Nous avons appelé notre système : SVAC (système du véhicule-actionneur coopératif). Il repose sur la possibilité des échanges d’information entre le véhicule et son environnement de conduite.Le SVAC permet une régulation plus précise du trafic puisqu’il se base sur les requêtes de droit de passage envoyées par les véhicules réellement présents dans l’intersection. En outre, grâce à la signalisation à bord, la régulation consiste à définir les séquences de passage des véhicules, ce qui permet de personnaliser la signalisation. Le gain de précision soulève plusieurs obstacles. D’une part, nous nous heurtons systématiquement à l’absence de modèles mathématiques permettant d’aborder le problème. D’autre part, la simple énumération des séquences implique une explosion combinatoire, ce qui ne convient pas à l’application temps-réelle de la régulation des intersections. Pour s’affranchir des deux problématiques nous avons utilisé les réseaux de Petri P-temporisés. Le modèle nous a permis de décrire sous la forme d’équations mathématiques les compteurs des différents évènements observés par les véhicules. Deux objectifs de régulation ont été dégagés après avoir déduit le temps moyen d’attente basé sur la formule de Little. Le premier consiste à vider les intersections au plus tôt. Nous avons proposé un algorithme de programmation dynamique et deux heuristiques. La première heuristique est directement issue de l’analyse des propriétés du problème posé. La deuxième est basée sur l’algorithme de colonies de fourmis. En effet, le problème défini est un cas particulier du problème du voyageur de commerce. Le deuxième objectif de régulation consiste à minimiser instantanément la longueur de la file d’attente. Dans ce cadre, nous avons supposé le fonctionnement à vitesse maximale du réseau de Petri. L’utilisation des contraintes sur les ressources nous a permis de définir des règles simples de régulation en utilisant le mapping.Dans ce mémoire, nous avons utilisé la simulation microscopique basée sur les lois de poursuite pour s’approcher du comportement de conduite. La simulation a servi pour la comparaison des différentes approches proposées dans ce mémoire avec les régulateurs adaptatifs et les intersections autonomes. Dans tous les cas notre approche se distingue par un gain de capacité, ce qui nous a encouragé de reproduire le SVAC à travers un prototype de robots. Cette maquette montre la faisabilité du système au moins pour des applications industrielles. / The aim of this work is to benefit from the potential of the cooperative driving in order to optimize the traffic throughput at isolated intersections. To achieve this objective, we have proposed a new traffic control system for isolated intersections: Cooperative Vehicle-Actuation Signalization (CVAS). The concept of this new system is based on the assumption of the ability of exchanging information between each vehicle and the surrounding vehicles or the nearby infrastructure.The system allows more precise control of the traffic since it determines the right-of-way of each vehicle according to its corresponding data sent by the embedded wireless device. The right-of-way is displayed to the driver by means of the onboard signalization. The control system determines the sequence of the vehicles to be directed through the intersection. For the sake of benefiting the improvement brought by the new system, we face several challenges. On the one hand, we are confronted with the absence of a mathematical model to address the control problem. On the other hand, despite the fact that the optimal passing sequence of vehicles can be found by the simple enumeration of all feasible sequences, the exhaustive search does not fulfill the requirements of the real-time application. To overcome these two problems, we seek help from the P-timed Petri nets. This mathematical modeling tool is able to describe the events observed by the position markers in the form of mathematical equations. Two different objectives of the control have been derived from the Little's formula. The first one aims to minimize the maximum exit time of vehicles present in the intersection. An algorithm of dynamic programming and two heuristics have been proposed to achieve this objective. The first heuristic is based on the analysis of the properties of the control problem. The second heuristic is based on the analogy between the dealt problem and the problem of Traveling Salesman Problem, which can be solved successfully by the algorithm of ant colony system. The second objective of the control is to instantly minimize the queue length. A protocol of relaying the right of way has been determined from the assumption of a Petri net that operates at its maximum speed. This simple protocol of control can be extended to all possible layouts of the isolated intersections by using the technique of “mapping”.In this work, a microscopic model (car-following model) is used to simulate the driving behavior. The simulations show that the CVAS system outperforms the other systems which are popularly used at present. It is even better than some innovative systems based on the technology of the cooperative driving. The good results encouraged us to replicate the system under real conditions through a prototype of NXT robots. The tests of this prototype prove the feasibility of the system at least for industrial applications.
|
Page generated in 0.0979 seconds