• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 54
  • 54
  • 54
  • 23
  • 18
  • 14
  • 11
  • 11
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

HETEROATOM-DOPED NANOPOROUS CARBONS: SYNTHESIS, CHARACTERIZATION AND APPLICATION TO GAS STORAGE AND SEPARATION

Ashourirad, Babak 01 January 2015 (has links)
Activated carbons as emerging classes of porous materials have gained tremendous attention because of their versatile applications such as gas storage/separations sorbents, oxygen reduction reaction (ORR) catalysts and supercapacitor electrodes. This diversity originates from fascinating features such as low-cost, lightweight, thermal, chemical and physical stability as well as adjustable textural properties. More interestingly, sole heteroatom or combinations of various elements can be doped into their framework to modify the surface chemistry. Among all dopants, nitrogen as the most frequently used element, induces basicity and charge delocalization into the carbon network and enhances selective adsorption of CO2. Transformation of a task-specific and single source precursor to heteroatom-doped carbon through a one-step activation process is considered a novel and efficient strategy. With these considerations in mind, we developed multiple series of heteroatom doped porous carbons by using nitrogen containing carbon precursors. Benzimidazole-linked polymers (BILP-5), benzimidazole monomer (BI) and azo-linked polymers (ALP-6) were successfully transformed into heteroatom-doped carbons through chemical activation by potassium hydroxide. Alternative activation by zinc chloride and direct heating was also applied to ALP-6. The controlled activation/carbonization process afforded diverse textural properties, adjustable heteroatom doping levels and remarkable gas sorption properties. Nitrogen isotherms at 77 K revealed that micropores dominate the porous structure of carbons. The highest Brunauer-Emett-Teller (BET) surface area (4171 m2 g-1) and pore volume (2.3 cm3 g-1) were obtained for carbon synthesized by KOH activation of BI at 700 °C. In light of the synergistic effect of basic heteroatoms and fine micropores, all carbons exhibit remarkable gas capture and selectivity. Particularly, BI and BIPL-5 derived carbons feature unprecedented CO2 uptakes of 6.2 mmol g-1 (1 bar) and 2.1 mmol g-1 (0.15 bar) at 298 K, respectively. The ALP-6 derived carbons retained considerable amount of nitrogen dopants (up to 14.4 wt%) after heat treatment owing to the presence of more stable nitrogen-nitrogen bonds compared to nitrogen-carbon bonds in BILP-5 and BI precursors. Subsequently, the highest selectivity of 62 for CO2/N2 and 11 for CO2/CH4 were obtained at 298 K for a carbon prepared by KOH activation of ALP-6 at 500 °C.
12

NEW APPROACHES TO CYCLOPENTADIENYL-FUSED THIOPHENE COMPLEXES OF IRON and SYNTHESIS AND CHARACTERIZATION OF CARBONIC ANHYDRASE ACTIVE-SITE MIMICS FOR CO<sub>2</sub> HYDRATION

Gupta, Deepshikha 01 January 2018 (has links)
Polyheterocycles such as polythiophene and its derivatives comprise an important class of conducting polymers used for electronic applications. They have been of great interest for use in electronic materials due to their increased environmental stability as well as novel electronic properties in their polymer states. We have been interested in exploring the electronic properties of organometallic analogues of the low-band-gap polymer poly(benzo[3,4-c]thiophene) (polyisothianaphthene) that incorporates η5-cyclopenta[c]thienyl monomers such as ferroceno[c]thiophene. First chapter of this dissertation involved synthetic attempts to ferroceno[c]thiophene. Exploring a shorter synthetic route to starting material, 1,2-di(hydroxymethyl)ferrocene was the first task. This was followed by attempts to synthesize an important precursor, 1,3-dihydroferroceno[c]thiophene to our target molecule, ferroceno[c]thiophene. In order to achieve our target precursor molecule, 1,3-dihydroferroceno[c]thiophene, we reacted 1,2-di(hydroxymethyl)ferrocene with H2S/H2SO4 and Na2S/HBF4 respectively. Reaction of 1,2-di(hydroxymethyl)ferrocene with either H2S/H2SO4 or Na2S/HBF4 results in 2,16-dithia[3.3](1,2)ferrocenophane instead of monomeric 1,3-dihydroferroceno[c]thiophene. Dehydration of 1,2-di(hydroxymethyl)ferrocene with dilute H2SO4 resulted in 2,16-dioxa[3.3](1,2)ferrocenophane. Formation of the five-membered tetrahydrothiophene or tetrahydrofuran rings is probably disfavored compared to formation of the ten-membered ferrocenophane rings because of greater strain in the five-membered rings. Thus, in order to achieve our target molecule ferroceno[c]thiophene, we took an alternate route. We decided to pursue the route with 1,4-dihydro-2,3-ferrocenodithiin being the precursor to our final target molecule. This was successfully accomplished. 1,2-Di(hydroxymethyl)ferrocene reacts with thiourea in the presence of catalytic trifluoroacetic acid to give a water-soluble thiouronium salt, which reacts with aqueous potassium hydroxide in air to give 1,4-dihydro-2,3-ferrocenodithiin, via oxidation of the intermediate 1,2 di(mercaptomethyl)ferrocene. 1,4-dihydro-2,3-ferrocenodithiin, an important precursor to our desired heterocyclic chemistry was synthesized. The increased emission of CO2, a greenhouse gas, to the atmosphere is a matter of serious worldwide concern. Every year a few gigatons of CO2 are added to the atmosphere by various anthropogenic activities like burning of fuel for electricity, running industry and transportation. Thus, developing ways to reduce the emission of CO2 to the atmosphere is of major importance. Although the amine-based absorption method is considered the most reliable, it is an expensive alternative. The catalyzed enhancement of CO2 absorption is a critical component to reduce the capital cost of CO2 capture. Specifically, an effective catalyst will increase the CO2 hydration rate, thereby decreasing the size of the absorber tower needed. In biological systems, CO2 hydration is catalyzed by the enzyme carbonic anhydrase, which contains ZnII in its active site. Carbonic anhydrase typically is not stable enough to be used in an industrial process, therefore, there is a need to synthesize robust, inexpensive CO2 hydration catalysts. Majority work of this dissertation focuses on designing catalysts that show high CO2 hydration rate similar to carbonic anhydrase while showing superiority towards temperature, pH and inhibitors. We focused our efforts on complexes of Zn, Cu and Co with ligands such as 1,4,7,10-tetraazacyclododecane (cyclen), 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (teta and tetb), tris(benzimidazolylmethyl)amine (BIMA) and anionic tris(pyrazolylborate)s that mimic the enzyme, carbonic anhydrase. Several of these complexes have been reported for their interesting CO2 capture properties but they contain hazardous perchlorate ion. We desired to replace them with benign, non-coordinating counterions like PF6-, BF4-, Cl-, CH3COO-, NO3-, CF3SO3-, SiF62- that avoid the potentially explosive perchlorate salts. In order to test the activity of synthesized catalysts under industrial capture conditions, we designed a quick experimental screening pH drop method. [[Zn(cyclen)(H2O)][SiF6]•2H2O as well as a number of other catalysts have been synthesized and tested for their post-combustion CO2 capture enhancement capabilities in aqueous solvent mixtures under both pH-drop screening and stopped-flow conditions. [Zn(cyclen)(H2O)][SiF6]•2H2O, which has an unreactive counteranion, is found to catalyze CO2 hydration in aqueous solvent mixtures under both pH-drop screening and stopped-flow conditions. However, under pH-drop which has conditions similar to industrial post combustion capture, activity of Zn(cyclen)(H2O)][SiF6]•2H2O drops as compared to observed in stopped-flow conditions probably because of bicarbonate coordination to Zn active site in these systems. The Zn center is highly electron deficient and therefore easily coordinates anions, inhibiting the ability to reform hydroxyl species on the metal. Thus, we decided to test the catalysis of benchmark enzyme carbonic anhydrase under similar conditions to determine the threshold value. Carbonic anhydrases catalyze the hydration of carbondioxide at ambient temperatures and physiological pH with the highest known rate constant= 106 M–1 s–1, but in our system (CAER pH drop screening) came out to be 438797 M–1 s–1. The lower catalytic rate constant for carbonic anhydrase in 0.1000 M K2CO3, similar to Zn-cyclen, strengthens the conjecture that at high bicarbonate concentrations, HCO3– binding to the Zn(II) active site slows catalysis by inhibiting bicarbonate displacement with water to regenerate the active species. The complexes containing anionic ligands that donate electron density into the metal center may serve to remove anionic bicarbonates/carbamates from the secondary coordination sphere and away from the metal center, thereby facilitating bicarbonate/anion dissociation and increasing CO2 hydration rates. We studied catalysis of trispyrazolylborate molecule in 30% MEA and found the molecule to be catalytically active. We also developed an NMR-based method to see if the coordination of solvents to CO2 capture solvents can be studied.
13

Reaction of sulfur dioxide (SO2) with reversible ionic liquids (RevILs) for carbon dioxide (CO2) capture

Momin, Farhana 02 February 2012 (has links)
Silylated amines, also known as reversible ionic liquids (RevILs), have been designed and structurally modified by our group for potential use as solvents for CO₂ capture from flue gas. An ideal CO₂ capture ionic liquid should be able to selectively and reversibly capture CO₂ and have tolerance for other components in flue gas, including SO₂, NO₂, and O₂. In this project, we study the reactivity, selectivity, uptake capacity, and reversibility of RevILs in the presence of pure SO₂ and mixed gas streams tosimulate flue gas compositions. Tripropylsilylamine (TPSA), a candidate CO₂ capture RevIL, reacts with pure SO₂ to form an ionic liquid consisting of an ammonium group and a salfamate group, supported by IR and NMR results. The resulting IL with pure SO₂ partially reverses when heated to temperatures of upto 500 C in the TGA. TGA analysis of the ionic liquid formed from a 4 vol% SO₂ in CO₂ mixture indicates a possible reversal temperature in the 86-163 C range.
14

Amine oxidation in carbon dioxide capture by aqueous scrubbing

Voice, Alexander Karl 20 August 2015 (has links)
Amine degradation in aqueous amine scrubbing systems for capturing CO₂ from coal fired power plants is a major problem. Oxygen in the flue gas is the major cause of solvent deterioration, which increases the cost of CO₂ capture due to reduced capacity, reduced rates, increased corrosion, solvent makeup, foaming, and reclaiming. Degradation also produces environmentally hazardous materials: ammonia, amides, aldehydes, nitramines, and nitrosamines. Thus it is important to understand and mitigate amine oxidation in industrial CO₂ capture systems. A series of lab-scale experiments was conducted to better understand the causes of and solutions to amine oxidation. This work included determination of rates, products, catalysts, and inhibitors for various amines at various conditions. Special attention was paid to understanding monoethanolamine (MEA) oxidation, whereas oxidation of piperazine (PZ) and other amines was less thorough. The most important scientific contribution of this work has been to show that amine oxidation in real CO₂ capture systems is much more complex than previously believed, and cannot be explained by mass transfer or reaction kinetics in the absorber by itself, or by dissolved oxygen kinetics in the cross exchanger. An accurate representation of MEA oxidation in real systems must take into account catalysts present (especially Mn and Fe), enhanced oxygen mass transfer in the absorber as a function of various process conditions, and possibly oxygen carriers other than dissolved oxygen in the cross exchanger and stripper. Strategies for mitigating oxidative degradation at low temperature, proposed in this and previous work are less effective or ineffective with high temperature cycling, which is more representative of real systems. In order of effectiveness, these strategies are: selecting an amine resistant to oxidation, reduction of dissolved metals in the system, reduction of the stripper temperature, reduction of the absorber temperature, and addition of a chemical inhibitor to the system. Intercooling in the absorber can reduce amine oxidation and improve energy efficiency, whereas amine oxidation should be considered in choosing the optimal stripper temperature. In real systems, 2-amino-2-methyl-1-propanol (AMP) is expected to be the most resistant to oxidation, followed by PZ and PZ derivatives, then methyldiethanolamine (MDEA), and then MEA. MEA oxidation with high temperature cycling is increased 70% by raising the cycling temperature from 100 to 120 °C, the proposed operational temperature range of the stripper. PZ oxidation is increased 100% by cycling to 150 °C as opposed to 120 °C. Metals are expected to increase oxidation in MEA and PZ with high temperature cycling by 40 - 80%. Inhibitor A is not expected to be effective in real systems with MEA or with PZ. MDEA is also not effective as an inhibitor in MEA, and chelating agents diethylenetriamine penta (acetic acid) (DTPA) and 2,5-dimercapto-1,3,4-thiadiazole (DMcT) are only mildly effective in MEA. Although MEA oxidation in real systems cannot be significantly reduced by any known additives, it can be accurately monitored on a continuous basis by measuring ammonia production from the absorber. Ammonia production was shown to account for two-thirds of nitrogen in degraded MEA at low temperature and with high temperature cycling, suggesting that it is a reliable indicator of MEA oxidation under a variety of process conditions. A proposed system, which minimizes amine oxidation while maintaining excellent rate and thermodynamic properties for CO₂ capture would involve use of 4 m AMP + 2 m PZ as a capture solvent with the stripper at 135 °C, intercooling in the absorber, and use of a corrosion inhibitor or continuous metals removal system. Reducing (anaerobic) conditions should be avoided to prevent excessive corrosion from occurring and minimize the amount of dissolved metals. This system is expected to reduce amine oxidation by 90-95% compared with the base case 7 m MEA with the stripper at 120 °C. / text
15

Thermal degradation and oxidation of aqueous piperazine for carbon dioxide capture

Freeman, Stephanie Anne 01 June 2011 (has links)
Absorption-stripping with aqueous, concentrated piperazine (PZ) is a viable retrofit technology for post-combustion CO2 capture from coal-fired power plants. The rate of thermal degradation and oxidation of PZ was investigated over a range of temperature, CO2 loading, and PZ concentration. At 135 to 175 °C, degradation is first order in PZ with an activation energy of 183.5 kJ/mole. At 150 °C, the first order rate constant, k1, for thermal degradation of 8 m PZ with 0.3 mol CO2/mol alkalinity is 6.12 × 10-9 s-1. After 20 weeks of degradation at 165 °C, 74% and 63%, respectively, of the nitrogen and carbon lost in the form of PZ and CO2 was recovered in quantifiable degradation products. N-formylpiperazine, ammonium, and N-(2-aminoethyl) piperazine account for 57% and 45% of nitrogen and carbon lost, respectively. Thermal degradation of PZ likely proceeds through SN2 substitution reactions. In the suspected first step of the mechanism, 1-[2-[(2-aminoethyl) amino]ethyl] PZ is formed from a ring opening SN2 reaction of PZ with H+PZ. Formate was found to be generated during thermal degradation from CO2 or CO2-containing molecules. An analysis of k1 values was applied to a variety of amines screened for thermal stability in order to predict a maximum recommended stripper temperature. Morpholine, piperidine, PZ, and PZ derivatives were found to be the most stable with an allowable stripper temperature above 160 °C. Long-chain alkyl amines or alkanolamines such as N-(2-hydroxyethyl)ethylenediamine and diethanolamine were found to be the most unstable with an allowable stripper temperature below 120 °C. Iron (Fe2+) and stainless steel metals (Fe2+, Ni2+, and Cr3+) were found to be only weak catalysts for oxidation of PZ, while oxidation was rapidly catalyzed by copper (Cu2+). In a system with Fe2+ or SSM, 5 kPa O2 in the inlet flue gas, a 55 °C absorber, and one-third residence time with O2, the maximum loss rate of PZ is expected to 0.23 mol PZ/kg solvent in one year of operation. Under the same conditions but with Cu2+ present, the loss rate of PZ is predicted to be 1.23 mole PZ/kg solvent in one year of operation. Inhibitor A was found to be effective at decreasing PZ loss catalyzed by Cu2+. Ethylenediamine, carboxylate ions, and amides were the only identified oxidation products. Total organic carbon analysis and overall mass balances indicate a large concentration of unidentified oxidation products. / text
16

CHEMICAL LOOPING GASIFICATION OF BIOMASS FOR HYDROGEN-ENRICHED GAS PRODUCTION

Acharya, Bishnu, Acharya, Bishnu 02 August 2011 (has links)
Environmental concerns and energy security are two major forces driving the fossil fuel based energy system towards renewable energy. In this context, hydrogen is gaining more and more attention in this 21st century. Presently, hydrogen is produced from reformation of fossil fuels, a process that could not address above two problems. For this it needs to be produced from a renewable carbon neutral energy source. Biomass has been identified as such a renewable energy source. Conversion of biomass through thermo-chemical gasification process in the presence of steam could provide a viable renewable source of hydrogen. This thesis presents an innovative system based on chemical looping gasification for producing hydrogen-enriched gas from biomass. The other merit of this system is that it produces a pure stream of carbon dioxide by conducting in-process capture and regeneration of sorbent. A laboratory scale chemical looping gasification (CLG) system based on a circulating fluidized bed (CFB) is developed and tested. Experiments conducted to gasify sawdust in CFB-CLG system shows that it could produce a gas with as much as 80% hydrogen and as little as 5% carbon dioxide. A kinetic model is developed to predict the performance of the gasifier of a CFB-CLG system, and is validated against experimental results. To understand the science of biomass gasification in the presence of steam and CaO, a number of additional studies are conducted. It show that for higher hydrogen and lower carbon dioxide concentration in the product gas, the optimum values of steam to biomass ratio, sorbent to biomass ratio, and operating temperature are 0.83, 2.0 and 670oC respectively. In CFB-CLG system the sorbent goes through a series of successive calcination-carbonation cycles. Calcination studies in presence of three alternate media, nitrogen, carbon dioxide and steam show, that steam calcination is best among them. An empirical relation for calcination in presence of three media is developed. Owing to the sintering, irrespective of medium used for calcination, the conversion of CaO reduces progressively as it goes through alternate calcination-carbonation cycles. An additional empirical equation is developed to predict the loss in sorbent’s ability during carbonation.
17

Design and Screening of Hypothetical Charged Metal-organic Frameworks for Carbon Dioxide Capture

Lo, Jason Wai-Ho January 2016 (has links)
Reducing anthropogenic carbon dioxide emissions from coal-fired power plants is an important step in mitigating climate change. To implement carbon dioxide capture technologies, materials capable of removing carbon dioxide efficiently are required. Currently, liquid amine technology is used for carbon dioxide capture. However, the mechanism for carbon dioxide removal in liquid amine requires extraordinary amounts of energy input. Alternatively, solid sorbents such as metal-organic frameworks (MOFs) show promising potentials as a type of material for carbon dioxide capture. Due their varying structural properties, MOFs can be configured for specific purposes. Certain MOFs carry a net charge on their frameworks, which may allow for increased interactions with carbon dioxide molecules. In this work, charged MOFs were studied for their potential in carbon dioxide capture. Due to the massive number of MOFs available, computational methods were employed for the study. This project includes three major components: (1) the development of novel computational methods to simulate the gas adsorption properties in charged materials, (2) a diverse database of 47,244 hypothetical charged MOFs was constructed to represent the capabilities of charged MOFs, and (3) screening of high performing charged MOFs for carbon capture application by combining the previous two portions of the project. The methods developed in this work include fitting intermolecular interaction parameters to quantum mechanical calculations in periodic systems with net charges. No methods have been reported in literature for such parameter fittings, even in well studied materials such as zeolites. Therefore, the gas adsorption estimation method for charged materials developed in this work is proprietary. Also, databases of hypothetical MOFs with framework net charges have never been reported previously in literature. By screening the charged MOFs in the database with the methods developed, gas adsorption capabilities were evaluated. The adsorption properties of a neutral group of hypothetical MOFs were also obtained for a baseline comparison. Between the two groups of MOFs, charged MOFs were found to outperform neutral MOFs in three key aspects. Firstly, charged MOFs were able to adsorb an average of three times as much carbon dioxide than the neutral group. Secondly, charged MOFs were capable of removing twice the amount of carbon dioxide per adsorption/desorption cycle than the neutral MOFs. Lastly, charged MOFs were able to selectively adsorb much more carbon dioxide over other gasses present in the carbon dioxide capture situations. Specific structural features that resulted in the selectiveness of adsorption in charged MOFs were identified. Also, positive correlations were found between the adsorption of carbon dioxide and the charge present in the MOFs. As seen in the results, charges present in MOFs can greatly increase their ability to remove carbon dioxide. Charged MOFs in the hypothetical database not only outperformed neutral MOFs, certain top performers were also found to exceed the requirements for post-combustion carbon capture application. Therefore, charged MOFs were shown to be a possible material for future carbon dioxide capture. The proprietary methods developed in this work can not only be used to simulate gas adsorptions in charged MOFs, but also for other porous materials, regardless of net charges presented in their systems. Also, the database constructed in this work can be utilized in multiple ways. Aside from carbon dioxide capture capabilities, the charged MOFs in the database can be screened for other gas separations and catalysis via high throughput screening. The database and the computational methods developed in this work pave the way for discovering the capabilities of charged materials.
18

Multi-Layer Connectivity-Based Atom Contribution Method for Charge Assignments in Metal-Organic Frameworks (MOFs)

Penley, Drace Robert 27 August 2019 (has links)
No description available.
19

Multiphase fluid flow in porous media and its effect on seismic velocity / 多孔質媒質中における多相流体流動及び地震波速度へ与える影響に関する研究

Yamabe, Hirotatsu 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18938号 / 工博第3980号 / 新制||工||1613(附属図書館) / 31889 / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 松岡 俊文, 教授 後藤 仁志, 准教授 村田 澄彦 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
20

Development of Carbon Capture Platforms using Membrane Technology and Enzyme-Mimicking Metal-Organic Complex Assemblies / 分離膜技術と酵素模倣型有機金属錯体集合を用いた炭素回収プラットフォームの開発

Nilouyal, Somaye 23 January 2024 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第25011号 / 工博第5188号 / 新制||工||1990(附属図書館) / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 SIVANIAH Easan, 教授 今堀 博, 教授 寺村 謙太郎 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM

Page generated in 0.0559 seconds