• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 46
  • 34
  • 12
  • 11
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 225
  • 56
  • 50
  • 42
  • 39
  • 36
  • 31
  • 31
  • 28
  • 27
  • 20
  • 19
  • 19
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Caracterização e localização dos pontos notáveis do triângulo / Characterization and location of the notable points of the triangle

Neves, Elvis Donizeti 01 February 2013 (has links)
O ensino de Matemática é, de modo geral, orientado pelos processos contidos nos livros didáticos. Sendo assim, a organização dos conceitos matemáticos nesses livros deveria ser capaz de permitir ao leitor interpretar a Matemática em sua essência, admitindo o estabelecimento de relações entre os conteúdos. No entanto, o que geralmente se observa nos materiais é um aglomerado de definições e conceitos desconexos que conduzem o leitor a dificuldades de aprendizado na área. Por essa razão, a presente dissertação teve o objetivo principal de localizar, além de caracterizar, os pontos notáveis do triângulo: o centróide ou baricentro (G), o ortocentro (H), o circuncentro (O), o centro (N) da circunferência de nove pontos, os três ex-centros das circunferências ex-inscritas, as projeções ortogonais dos vértices sobre os lados opostos e os pontos de tangência da circunferência inscrita e ex-inscrita. Quatro abordagens são apresentadas em busca de tal objetivo: a-) apresentar a geometria do triângulo segundo técnicas de percepção visual; b-) caracterizar alguns pontos notáveis do triângulo, como pontos de máximo ou de mínimo de funções com as demonstrações utilizando desigualdade de Cauchy-Schwarz e entre média aritmética e geométrica; c-) utilizar um sistema cartesiano adequado para o cálculo das abscissas e ordenadas do centróide (G), do ortocentro (H) e do circuncentro (O) de um triângulo; d-) utilizar os números complexos para a completa localização de todos os pontos notáveis do triângulo além de apresentar a equação da reta de Euler, o incentro (I) e os três excentros IA, IB e IC localizados em fórmulas simples. A dissertação finaliza com o Teorema de Feuerbach, apresentado com uma prova elementar, mostrando que a circunferência de nove pontos e a circunferência inscrita são tangentes internamente e que a circunferência dos nove pontos é tangente exteriormente a cada uma das três ex circunferências e o Teorema de Napoleão, no qual os baricentros de triângulos equiláteros, construídos a partir dos lados de um triângulo qualquer, formam um outro triângulo equilátero. Comparando as várias abordagens da dissertação, a conclusão é a de que a compreensão dos números complexos paradoxalmente simplifica a resolução de problemas de geometria plana e a solução de equações polinomiais. Assim, acredita-se que uma maior exploração desse conteúdo no ensino da Matemática poderia tornar o aprendizado mais atraente e simplificado / The teaching of Mathematics is generally guided by the procedures contained in the textbooks. Thus, the organization of the mathematical concepts in these books should be able to allow the reader to interpret the Mathematics in its essence, admitting the establishment of relationships between the contents. However, what is observed in the materials is a conglomeration of disparate definitions and concepts that lead the reader to learning difficulties in the area. For this reason, this work aimed to locate and characterize the notable points of the triangle: the centroid or barycenter (G), the orthocenter (H), the circumcenter (O), the center (N) of circumference of nine points, three former centers of the ex-inscribed circles, orthogonal projections of the vertices on the opposite sides and the points of tangency of the inscribed and the ex-inscribed circumference. Four approaches are presented to achieve these goals: a-) to introduce the geometry of the triangle using visual perception techniques, b-) to characterize some notable points of the triangle, as points of maximum or minimum of functions with the demonstrations using the Cauchy-Schwarz inequality and between the arithmetic and geometric mean;-c) to use a suitable Cartesian system for calculating the abscissas and ordinates of the centroid (G), of orthocenter (H) and of the circumcenter (O) of a triangle;-d) to use complex numbers for the complete location of all notable points of the triangle, beyond depicting the Euler equation of the line, the incenter (I) and the three former centers IA, IB and IC located in simple formulas. The work is concluded with the Feuerbach\'s Theorem, presented with an elementary proof, showing that the nine-point circle and the incircle is tangent internally and that the circumference of the nine points is externally tangent to each of the three ex-inscribed circles and the Napoleons Theorem, in which the barycenters of equilateral triangles, constructed from the sides of any triangle, form another equilateral triangle. Comparing the approaches detached hitherto, the conclusion is that the understanding of complex numbers paradoxically simplifies troubleshooting of plane geometry and the solution of polynomial equations. Thus, it is believed that further exploration of this content in mathematics education could make learning more attractive and simplified
42

Very Cost Effective Partitions in Graphs

Vasylieva, Inna 01 May 2013 (has links)
For a graph G=(V,E) and a set of vertices S, a vertex v in S is said to be very cost effective if it is adjacent to more vertices in V -S than in S. A bipartition pi={S, V- S} is called very cost effective if both S and V- S are very cost effective sets. Not all graphs have a very cost effective bipartition, for example, the complete graphs of odd order do not. We consider several families of graphs G, including Cartesian products and cacti graphs, to determine whether G has a very cost effective bipartition.
43

Roman Domination in Complementary Prisms

Alhashim, Alawi I 01 May 2017 (has links)
The complementary prism GG of a graph G is formed from the disjoint union of G and its complement G by adding the edges of a perfect match- ing between the corresponding vertices of G and G. A Roman dominating function on a graph G = (V,E) is a labeling f : V(G) → {0,1,2} such that every vertex with label 0 is adjacent to a vertex with label 2. The Roman domination number γR(G) of G is the minimum f(V ) = Σv∈V f(v) over all such functions of G. We study the Roman domination number of complementary prisms. Our main results show that γR(GG) takes on a limited number of values in terms of the domination number of GG and the Roman domination numbers of G and G.
44

A sharp interface Cartesian grid hydrocode

Sambasivan, Shiv Kumar 01 May 2010 (has links)
Dynamic response of materials to high-speed and high-intensity loading conditions is important in several applications including high-speed flows with droplets, bubbles and particles, and hyper-velocity impact and penetration processes. In such high-pressure physics problems, simulations encounter challenges associated with the treatment of material interfaces, particularly when strong nonlinear waves like shock and detonation waves impinge upon them. To simulate such complicated interfacial dynamics problems, a fixed Cartesian grid approach in conjunction with levelset interface tracking is attractive. In this regard, a sharp interface Cartesian grid-based, Ghost Fluid Method (GFM) is developed for resolving embedded fluid, elasto-plastic solid and rigid (solid) objects in hyper-velocity impact and high-intensity shock loaded environment. The embedded boundaries are tracked and represented by virtue of the level set interface tracking technique. The evolving multi-material interface and the flow are coupled by meticulously enforcing the boundary conditions and jump relations at the interface. In addition, a tree-based Local Mesh Refinement scheme is employed to efficiently resolve the desired physics. The framework developed is generic and is applicable to interfaces separating a wide range of materials and for a broad spectrum of speeds of interaction (O(km/s)). The wide repertoire of problems solved in this work demonstrates the flexibility, stability and robustness of the method in accurately capturing the dynamics of the embedded interface. Shocks interacting with large ensembles of particles are also computed.
45

Applying vessel inlet/outlet conditions to patient-specific models embedded in Cartesian grids

Goddard, Aaron Matthew 01 December 2015 (has links)
Cardiovascular modeling has the capability to provide valuable information allowing clinicians to better classify patients and aid in surgical planning. Modeling is advantageous for being non-invasive, and also allows for quantification of values not easily obtained from physical measurements. Hemodynamics are heavily dependent on vessel geometry, which varies greatly from patient to patient. For this reason, clinically relevant approaches must perform these simulations on patient-specific geometry. Geometry is acquired from various imaging modalities, including magnetic resonance imaging, computed tomography, and ultrasound. The typical approach for generating a computational model requires construction of a triangulated surface mesh for use with finite volume or finite element solvers. Surface mesh construction can result in a loss of anatomical features and often requires a skilled user to execute manual steps in 3rd party software. An alternative to this method is to use a Cartesian grid solver to conduct the fluid simulation. Cartesian grid solvers do not require a surface mesh. They can use the implicit geometry representation created during the image segmentation process, but they are constrained to a cuboidal domain. Since patient-specific geometry usually deviate from the orthogonal directions of a cuboidal domain, flow extensions are often implemented. Flow extensions are created via a skilled user and 3rd party software, rendering the Cartesian grid solver approach no more clinically useful than the triangulated surface mesh approach. This work presents an alternative to flow extensions by developing a method of applying vessel inlet and outlet boundary conditions to regions inside the Cartesian domain.
46

An Adaptively refined Cartesian grid method for moving boundary problems applied to biomedical systems

Krishnan, Sreedevi 01 January 2006 (has links)
A major drawback in the operation of mechanical heart valve prostheses is thrombus formation in the near valve region potentially due to the high shear stresses present in the leakage jet flows through small gaps between leaflets and the valve housing. Detailed flow analysis in this region during the valve closure phase is of interest in understanding the relationship between shear stress and platelet activation. An efficient Cartesian grid method is developed for the simulation of incompressible flows around stationary and moving three-dimensional immersed solid bodies as well as fluid-fluid interfaces. The embedded boundaries are represented using Levelsets and treated in a sharp manner without the use of source terms to represent boundary effects. The resulting algorithm is implemented in a straightforward manner in three dimensions and retains global second-order accuracy. When dealing with problems of disparate length scales encountered in many applications, it is necessary to resolve the physically important length scales adequately to ensure accuracy of the solution. Fixed grid methods often have the disadvantage of heavy mesh requirement for well resolved calculations. A quadtree based adaptive local mesh refinement scheme is developed to complement the sharp interface Cartesian grid method scheme for efficient and optimized calculations. Detailed timing and accuracy data is presented for a variety of benchmark problems involving moving boundaries. The above method is then applied to modeling heart valve closure and predicting thrombus formation. Leaflet motion is calculated dynamically based on the fluid forces acting on it employing a fluid-structure interaction algorithm. Platelets are modeled and tracked as point particles by a Lagrangian particle tracking method which incorporates the hemodynamic forces on the particles. Leaflet closure dynamics including rebound is analyzed and validated against previous studies. Vortex shedding and formation of recirculation regions are observed downstream of the valve, particularly in the gap between the valve and the housing. Particle exposure to high shear and entrapment in recirculation regions with high residence time in the vicinity of the valve are observed corresponding to regions prone to thrombus formation.
47

An Immersed Interface Method for the Incompressible Navier-Stokes Equations in Irregular Domains

Le, Duc-Vinh, Khoo, Boo Cheong, Peraire, Jaime 01 1900 (has links)
We present an immersed interface method for the incompressible Navier Stokes equations capable of handling rigid immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid at the immersed boundary. The forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated using cubic splines. The strength of singular forces is determined by solving a small system of equations at each time step. The Navier-Stokes equations are discretized on a staggered Cartesian grid by a second order accurate projection method for pressure and velocity. / Singapore-MIT Alliance (SMA)
48

Viscous hypersonic flow physics predictions using unstructured Cartesian grid techniques

Sekhar, Susheel Kumar 12 November 2012 (has links)
Aerothermodynamics is an integral component in the design and implementation of hypersonic transport systems. Accurate estimates of the aerodynamic forces and heat transfer rates are critical in trajectory analysis and for payload weight considerations. The present work seeks to investigate the ability of an unstructured Cartesian grid framework in modeling hypersonic viscous flows. The effectiveness of modeling viscous phenomena in hypersonic flows using the immersed boundary ghost cell methodology of this solver is analyzed. The capacity of this framework to predict the surface physics in a hypersonic non-reacting environment is investigated. High velocity argon gas flows past a 2-D cylinder are simulated for a set of freestream conditions (Reynolds numbers), and impact of the grid cell sizes on the quality of the solution is evaluated. Additionally, the formulation is verified over a series of hypersonic Mach numbers for the flow past a hemisphere, and compared to experimental results and empirical estimates. Next, a test case that involves flow separation and the interaction between a hypersonic shock wave and a boundary layer, and a separation bubble is investigated using various adaptive mesh refinement strategies. The immersed boundary ghost cell approach is tested with two temperature clipping strategies, and their impact on the overall solution accuracy and smoothness of the surface property predictions are compared. Finally, species diffusion terms in the conservation equations, and collision cross-section based transport coefficients are installed, and hypersonic flows in thermochemical nonequilibrium environments are studied, and comparisons of the off-surface flow properties and the surface physics predictions are evaluated. First, a 2-D cylinder in a hypersonic reacting air flow is tested with an adiabatic wall boundary condition. Next, the same geometry is tested to evaluate the viscous chemistry prediction capability of the solver with an isothermal wall boundary condition, and to identify the strengths and weaknesses of the immersed boundary ghost cell methodology in computing convective heating rates in such an environment.
49

An Efficient Hierarchical Optical Path Network Design Algorithm based on a Traffic Demand Expression in a Cartesian Product Space

Yagyu, Isao, Hasegawa, Hiroshi, Sato, Ken-ichi 08 1900 (has links)
No description available.
50

2.4 GHz Power Amplifier with Cartesian Feedback for WLAN / 2.4 GHz Effektförstärkare med Cartesisk återkoppling för WLAN

Hofvendahl, Maria January 2002 (has links)
This final year project describes the linearisation method Cartesian feedback and the design of such a feedback with a 2.4GHz power amplifier. To investigate the functionality of the Cartesian feedback ideal blocks with no current consumption were made and then gradually analog circuits were introduced into the feedback. The Cartesian feedback design consists of a subtracter, a modulator and a preamplifier in the top path and a demodulator and a filter in the feedback path. The blocks that are discussed in this report are the subtracter and the modulator unit. The circuits are designed in a 0.35µm SiGe BiCMOS technology. The result of the Cartesian feedback showed an increase in 1dB compression point by 6.2dBm and the IMD was improved by 17dB.

Page generated in 0.0665 seconds