11 |
Steam-hydrocarbon reforming for lower polluting automotive fuelsLorton, G. A. January 1973 (has links)
No description available.
|
12 |
Catalytic methane reformation and aromatization reaction studies via cavity ringdown spectroscopy and time of flight mass spectrometryLi, Ling, 李凌 January 2007 (has links)
published_or_final_version / abstract / Chemistry / Doctoral / Doctor of Philosophy
|
13 |
Propane reforming under carboninduced deactivation: catalyst design and reactor operationHardiman, Kelfin Martino, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Steam reforming is the most economical and widely-used route for the conversion of light hydrocarbon (such as natural gas) to various valued-added products. This process is commonly carried out over a low-cost alumina-supported nickel catalyst, which often suffers from carbon deposition resulting in loss of active sites, flow and thermal maldistribution, as well as excessive pressure drop. A bimetallic catalyst with improved anti-coking properties was formulated by incorporating the nickel-based system (15% loading) with cobalt metal (5% loading). Two-level factorial design was employed to investigate the effect of major preparation variables, namely impregnation pH value (2-8), calcination temperature (873-973 K), heating rate (5-20 K min-1) and time (1-5 h). The catalysts prepared were subjected to various characterisation techniques to determine key physicochemical properties (i.e. BET area, H2-chemisorption and NH3- TPD acidity). X-ray diffraction revealed that NiO, Co3O4, NiCo2O4 and a proportion of Ni(Co)Al2O4 aluminates were transformed during H2-reduction to active Co and Ni crystallites. TEM images showed an egg yolk profile in the low-pH catalyst suggesting that main deposition site was located in the particle centre, while metal deposition occurred primarily around the particle exterior for the high-pH catalyst. Temperature programmed experiments were carried out to examine the extent of conversion, type of surface species and solid-state kinetics (using the Avrami-Erofeev model) involved during various stages in catalyst life-cycle (calcination, reduction, oxidation and regeneration). Steam reforming analysis suggested that enhanced catalyst activity may be due to synergism in the Co-Ni catalyst. Specifically, the low-pH catalyst exhibited better resistance towards carbon-induced deactivation than the high-pH formulation. The study also provided the first attempt to develop a quantitative relation between catalyst preparation conditions and its performance (activity, product selectivity and deactivation) for steam reforming reaction. Deactivation and reforming kinetic coefficients were simultaneously evaluated from propane reforming conversion-time data under steam-to-carbon ratios of 0.8-1.6 and reaction temperatures between 773-873 K. The time-dependent optimum operational policy derived based on these rate parameters gave better conversion stability despite the heavy carbon deposit. Thermal runs further showed that the catalysts regenerated via two-stage reductive-oxidative coke burn-off exhibited superior surface properties compared to those rejuvenated by a single-step oxidation.
|
14 |
Propane reforming under carboninduced deactivation: catalyst design and reactor operationHardiman, Kelfin Martino, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Steam reforming is the most economical and widely-used route for the conversion of light hydrocarbon (such as natural gas) to various valued-added products. This process is commonly carried out over a low-cost alumina-supported nickel catalyst, which often suffers from carbon deposition resulting in loss of active sites, flow and thermal maldistribution, as well as excessive pressure drop. A bimetallic catalyst with improved anti-coking properties was formulated by incorporating the nickel-based system (15% loading) with cobalt metal (5% loading). Two-level factorial design was employed to investigate the effect of major preparation variables, namely impregnation pH value (2-8), calcination temperature (873-973 K), heating rate (5-20 K min-1) and time (1-5 h). The catalysts prepared were subjected to various characterisation techniques to determine key physicochemical properties (i.e. BET area, H2-chemisorption and NH3- TPD acidity). X-ray diffraction revealed that NiO, Co3O4, NiCo2O4 and a proportion of Ni(Co)Al2O4 aluminates were transformed during H2-reduction to active Co and Ni crystallites. TEM images showed an egg yolk profile in the low-pH catalyst suggesting that main deposition site was located in the particle centre, while metal deposition occurred primarily around the particle exterior for the high-pH catalyst. Temperature programmed experiments were carried out to examine the extent of conversion, type of surface species and solid-state kinetics (using the Avrami-Erofeev model) involved during various stages in catalyst life-cycle (calcination, reduction, oxidation and regeneration). Steam reforming analysis suggested that enhanced catalyst activity may be due to synergism in the Co-Ni catalyst. Specifically, the low-pH catalyst exhibited better resistance towards carbon-induced deactivation than the high-pH formulation. The study also provided the first attempt to develop a quantitative relation between catalyst preparation conditions and its performance (activity, product selectivity and deactivation) for steam reforming reaction. Deactivation and reforming kinetic coefficients were simultaneously evaluated from propane reforming conversion-time data under steam-to-carbon ratios of 0.8-1.6 and reaction temperatures between 773-873 K. The time-dependent optimum operational policy derived based on these rate parameters gave better conversion stability despite the heavy carbon deposit. Thermal runs further showed that the catalysts regenerated via two-stage reductive-oxidative coke burn-off exhibited superior surface properties compared to those rejuvenated by a single-step oxidation.
|
15 |
Catalytic methane reformation and aromatization reaction studies via cavity ringdown spectroscopy and time of flight mass spectrometryLi, Ling, January 2007 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2008. / Also available in print.
|
16 |
Steam reforming of model compounds of bio-oil with and without CO₂ sorbentWang, Meng 24 December 2014 (has links)
Hydrogen as a clean energy carrier has drawn great attention. Production of H2 from sustainable bio-oil is considered an alternative for conventional fossil fuel based energy system, since the overall process of bio-oil converting to H2 ideally is carbon-neutral and hence environmental friendly. This study focuses on developing an adequate catalyst for bio-oil steam reforming to produce H2. Ruthenium and/ or nickel based catalysts supported on alumina, ceria-alumina or ceria-silica were synthesized by sol-gel method or incipient wetness impregnation and characterized using BET Surface area analysis, Powder X-Ray diffraction (XRD), Temperature Programmed Reduction (TPR) and Scanning Electron Microscopy (SEM). Steam reforming of selected model compounds, n-propanol, glycerol and acetic acid, was investigated in a fixed bed tubular flow reactor over the prepared catalysts at 450 or 500 °C. The effects of support nature, preparation method, catalyst composition and reaction temperature on the steam reforming activity and stability of catalysts were studied. Catalysts showing better performance in terms of reactant conversion and H2 yield were selected for investigating the steam reforming of an acetic acid/glycerol aqueous mixture, consisting of acetic acid and glycerol with a weight ratio of 3/7 similar to a bio-oil generated from fast pyrolysis of cellulose. The steam-to-carbon ratio (S/C) and the flow rate of feed were constant at 4 and 0.1 ml/min, respectively. The effluent gas was monitored by GC/TCD and the evolution of carbon conversion and product gas distribution as a function of time was studied. Among all catalysts investigated, the one with nominal composition A10C10N1Rnc showed the best performance in steam reforming at 500 °C as indicated by higher and more stable H2 yields achieved regardless the reactant used. In order to investigate the sorption-enhanced steam reforming, three CaO-based CO2 absorbents were synthesized: two derived from calcium acetate with or without MgO support, noted as CAM and CA, respectively, and the other MgO-supported one derived from calcium d-gluconate, denoted as CGM. Results from the 15-carbonation/regeneration-cycle test suggested that the MgO-containing absorbent CAM has the highest CaO molar conversion and stable CO2 absorption capacity. Though significantly higher CO2 absorption capacity was shown from absorbent CA in the first one cycle, CA absorbent soon lost most of the CO2 absorption capacity due to severe sintering. In addition, the CO2 absorption capacity of absorbent CGM might be underestimated due to insufficient carbonation time. The A10C10N1Rnc catalyst and the CAM absorbent were applied in the steam reforming of acetic acid/glycerol mixture at 500°C. However, no significant improvement can be observed in the presence of absorbent CAM
|
17 |
Desenvolvimento de modelo matemático do sistema reacional de uma unidade industrial de reforma catalítica de nafta com leito móvel. / Development of mathematical model of a reaction system of an industrial unit of nafta catalytic reforming with mobile bed.Rodrigues, Carolina May 26 March 2014 (has links)
Reforma catalítica de nafta é um dos processos mais importantes para a produção de gasolina de alta octanagem, hidrocarbonetos aromáticos e hidrogênio na indústria de petróleo e petroquímica. Para predizer os rendimentos e as propriedades dos produtos ou mesmo melhorar as condições de processo é recomendado descrever o processo matematicamente em termos de modelos cinéticos. A nafta tem um grande número de compostos com número de carbonos variando de cinco a doze, assim, um modelo considerando todos os componentes e reações, é complexo. Modelos baseados em lumps costumam agrupar os compostos em isômeros de mesma natureza. Neste trabalho, é proposto um modelo cinético de uma unidade comercial de reforma catalítica com regeneração contínua de catalisador (CCR Continuous Catalyst Regeneration) capaz de predizer o perfil de temperatura e a de composição dos produtos ao longo do reator. O modelo é baseado na análise de hidrocarbonetos parafínicos, naftênicos e aromáticos e na temperatura de carga. A cinética envolve 24 reações modeladas como de pseudo-primeira ordem e 19 componentes. Os parâmetros cinéticos foram estimados usando dados de uma unidade da Petrobras, localizada em Cubatão-SP. O modelo proposto descreve a operação de quatro reatores com fluxo radial representando-os como um reator de fluxo pistonado (PFR Plug Flow Reactor), pois nas condições de operação os efeitos de dispersão radial e axial são assumidos desprezíveis. Os resultados mostram que o modelo pode ser usado para prever os rendimentos de benzeno, tolueno, xileno e hidrogênio. Para os demais compostos os resultados demonstram a necessidade de sofisticação da abordagem. O modelo representa de forma adequada a variação da concentração dos compostos e da temperatura ao longo do inventário de catalisador. / Naphtha catalytic reforming is one of the most important processes for producing high octane gasoline, aromatic products and hydrogen in petroleum and petrochemical industries. To predict yield and properties of the products or even improve the process conditions it is recommended to mathematically describe the process in terms of kinetic models. The naphtha feedstock has a large number of compounds with carbon number ranging from five to twelve. Thus, a detailed kinetic model considering all the components and reactions is complex. Lumping models are used to group the compounds in terms of isomers of the same nature. A kinetic and reactor model of a commercial naphtha continuous catalytic reforming process is proposed to predict temperature profile and products composition. The model is based on paraffins, naphthenes and aromatics analysis and reformer inlet temperature. Kinetics involves 24 pseudo-first-order rate reactions with 19 compounds. All parameters were estimated from industrial data of a Petrobras Refinery at Cubatão-SP. The reactor model describes four radial flow reactors represented by a PFR, due to the fact that under typical reformer operating conditions, radial and axial dispersion effects were found to be negligible. Simulation results demonstrate good agreements between model predictions and actual plant data for benzene, toluene, xylenes and hydrogen. For the remaining compounds, the model output suggests the need for approach sophistication. Nevertheless, the model adequately represents
|
18 |
The kinetics of non-catalyzed supercritical water reforming of ethanolWenzel, Jonathan E., Lee, Sunggyu. January 2008 (has links)
Title from PDF of title page (University of Missouri--Columbia, viewed on March 2, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Dr. Sunggyu Lee, Dissertation Advisor. Vita. Includes bibliographical references.
|
19 |
Fabricação e testes de células a combustível de óxido sólido a etanol direto usando camada catalítica / Solid oxide fuel cells fabrication and operation running direct ethanol using a catalytic layerNOBREGA, SHAYENNE D. da 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:35:43Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:03:54Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
20 |
Fabricação e testes de células a combustível de óxido sólido a etanol direto usando camada catalítica / Solid oxide fuel cells fabrication and operation running direct ethanol using a catalytic layerNOBREGA, SHAYENNE D. da 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:35:43Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:03:54Z (GMT). No. of bitstreams: 0 / Células a combustível de óxido sólido suportadas no eletrólito de zircônia estabilizada com ítria (YSZ) foram fabricadas usando a técnica do recobrimento por rotação (spin-coating) para deposição de catodos de manganita de lantânio dopada com estrôncio (LSM) e anodos compósitos de níquel e YSZ (Ni-YSZ). Parâmetros microestruturais dos eletrodos, tais como espessura, tamanho médio de partículas e temperatura de sinterização foram otimizados, visando reduzir a resistência de polarização da célula e melhorar o seu desempenho. Estes estudos serviram de base para a fabricação de células com camada catalítica para uso com etanol direto. Sobre o anodo Ni-YSZ da célula foi depositada uma camada catalítica de céria dopada com gadolínia (CGO) com 0,1% em peso de irídio (Ir-CGO). A camada catalítica visa reformar o etanol antes do seu contato com o anodo Ni-YSZ, evitando o depósito de carbono na superfície do Ni que inviabiliza o uso de combustíveis primários contendo carbono nestas células a combustível. Inicialmente, a célula a combustível foi testada com etanol e as melhores condições de operação foram determinadas. Em seguida, as células unitárias foram testadas com etanol sem adição de água por períodos de tempo de até 390 horas. As células a combustível a etanol direto com camada catalítica operam no modo de reforma interna gradual, apresentando boa estabilidade e densidades de corrente similares às obtidas na operação com hidrogênio. Após a operação das células a combustível a etanol direto, análises de microscopia eletrônica de varredura mostraram que não houve formação significativa de depósitos de carbono na superfície do Ni, indicando que a camada catalítica de Ir-CGO foi efetiva para operação com o etanol. Testes de células a combustível a etanol direto sem a camada catalítica revelaram uma rápida degradação nas horas iniciais de operação com formação de grandes quantidades de depósitos de carbono identificados visualmente. Considerando-se a operação estável com etanol a seco por tempos relativamente longos de operação, os resultados alcançados representam um avanço significativo e apontam para o desenvolvimento de células a combustível a etanol direto usando-se os componentes tradicionais com a adição de uma camada catalítica. / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
Page generated in 0.1056 seconds