21 |
Examination of the capacity of cathelicidins to control Bacillus anthracis pathogenesisLisanby, Mark W. January 2009 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2009. / Title from first page of PDF file (viewed on June 10, 2009). Includes bibliographical references.
|
22 |
Novel Multi-Headed Cationic Amphiphiles : Synthesis, Aggregation And Antibacterial PropertiesHaldar, Jayanta 07 1900 (has links) (PDF)
No description available.
|
23 |
Novel Redox Responsive Cationic Lipids, Lipopolymers, Glycolipids And Phospholipid-Cationic Lipid Mixtures : Syntheses, Aggregation And Gene Transfection PropertiesGuru Raja, V January 2014 (has links) (PDF)
The thesis entitled “Novel Redox Responsive Cationic Lipids, Lipopolymers,
Glycolipids and Phospholipid-Cationic Lipid Mixtures: Syntheses, Aggregation and Gene Transfection Properties” elucidates the design, synthesis, aggregation and gene transfection properties of novel cholesterol based cationic lipids with ferrocene as the redox moiety, polyethylenimine based ferrocenylated lipopolymers and cholesterol based non-ionic glycolipids. The thesis also discusses the cationic phospholipid-cationic lipid mixtures as superior gene transfection agents. The work has been divided into six chapters.
Chapter 1. Introduction
Part A. Various Cholesterol based Systems for Applications as Biomaterials
Liposomes composed of cationic lipids have become popular gene delivery vehicles. A great deal of research is being pursued to make efficient vectors by varying their molecular architecture. Cholesterol being ubiquitous component in most of the animal cell membranes is increasingly being used as a hydrophobic segment of synthetic cationic lipids. In this chapter we describe various cholesterol based cationic lipids and focus on the effect of modifying various structural segments like linker and the headgroup of the cationic lipids on gene transfection efficiency with a special emphasis on the importance of ether linkage between cholesteryl backbone and the polar headgroup. Interaction of cationic cholesteryl lipids with dipalmitylphosphatidycholine membranes is also discussed here. Apart from cholesterol being an attractive scaffold in
the drug/gene delivery vehicles, certain cholesteryl derivatives have also been shown to be attractive room temperature liquid-crystalline materials.
Part B. Diverse Applications of Ferrocene Derivatives
This chapter gives a brief overview of ferrocene chemistry followed by description of major applications of ferrocenyl derivatives in a variety of fields like catalysis, materials chemistry, electrochemical sensors, medicinal chemistry etc. We discuss the use of ferrocene as an electrochemical and redox active switch to achieve control over supramolecular aggregation. It also reviews ferrocene based amphiphiles including surfactants, lipids and polymers with an emphasis on the role of ferrocene over aggregate formation and their utilization in biological applications.
Chapter 2: Optimization of Redox Active Alkyl-Ferrocene Modified Polyethylenimines for Efficacious Gene Delivery in Serum
1a-c, n = 6, P8-C6-F1, P8-C6-F2, P8-C6-F3
2a-c, n = 11, P8-C11-F1 P8-C11-F2, P8-C11-F3
% ferrocene grafting, F1 = 15%, F2 = 25% and F3 = 50%
Figure 1. Structure of the alkyl-ferrocene modified 800 Da Branched Polyethylenimine.
In this chapter we present six new lipopolymers based on low molecular weight polyethylenimines (BPEI 800 Da) which are hydrophobically modified using ferrocene
terminated alkyl tails of variable lengths. The effects of degree of grafting, spacer length and redox state of ferrocene in the lipopolymer on the self assembly properties were investigated in detail by transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and zeta potential measurements. The assemblies displayed a redox induced increase in the size of the aggregates. The coliposomes comprising of the lipopolymer and a helper lipid 1,2-Dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) showed excellent gene delivery capability in serum containing environment in two cancer cell lines (HeLa, U251 cells). Optimized formulations showed remarkably higher transfection activity than BPEI 25 KDa and even better than commercial Lipofectamine 2000 as evidenced from luciferase activity and EGFP expression analysis. Oxidation of ferrocene in lipopolymers led to reduced levels of gene transfection which was also followed by cellular internalization of fluorescently labeled pDNA using confocal microscopy. Cytotoxicity assay revealed no obvious toxicity for the lipopolyplexes in the range of optimized transfection levels. Overall, we have exploited the redox activity of ferrocene in PEI based polymeric gene carriers for trenchant control over gene transfection potential.
RLU/mg protein HeLa Cells
Figure 2. Maximum transfection efficacies of optimized redox lipopolymer/DOPE formulations by (A) Luciferase Assay and (B) Flow cytometry (GFP expression).
Chapter 3. Membranes derived from Redox-active Cholesterol based Cationic Lipids and their Interactions with DNA and Phospholipid Membranes
Figure 3. Molecular structures of the electroactive cholesterol based monomeric and gemini lipids.
This chapter describes the synthesis and aggregation properties of two series of redox-active ferrocene containing monomeric and gemini cationic lipids with cholesterol as a hydrophobic domain. These cationic lipids are modified at their headgroup region using ferrocene terminated alkyl chains of differing length. All the four cationic lipids formed stable suspensions in water. Aggregation behavior of these cationic lipids in aqueous suspensions in their unoxidized and oxidized state was studied using TEM, DLS, zeta potential measurements and XRD studies. Cationic lipids with ferrocene in natural, reduced state were found form bigger sized vesicles which upon oxidation became smaller aggregates with increased zeta potential. XRD results indicate the existence of nice lamellar arrangements of the lipid bilayers. Thermotropic phase transition behavior of DPPC membranes incorporated with cationic ferrocene lipids was also studied using differential scanning calorimetry. Finally, we assayed pDNA (plasmid DNA) binding ability of all the four cationic lipids using ethidium bromide intercalation assay where all the cationic lipid formulations showed excellent DNA binding capability. In the experiments involving SDS-induced release of DNA, we observed that redox-active monomeric lipids (3a-b) were found to be more efficient in facilitating the release of DNA from the liposome-DNA complex in the presence of negatively charged SDS micelles than their gemini counterparts (4a-b).
Chapter 4. Redox-responsive Gene Delivery by Ferrocene containing Cationic Cholesteryl Lipids in Serum
This chapter describes the transfection efficacy of redox-active monomeric and gemini cationic lipids with cholesterol backbone. The transfection efficiency of all the lipids could be tuned by changing the oxidation state of the ferrocene moiety. Gene transfection capability was assayed in terms of EGFP expression using pEGFP-C3 plasmid DNA in three cancer cell lines of different origin, namely Caco-2, HEK293T and HeLa in the presence of serum.
Figure 4. Effect of oxidation state of ferrocene on maximum transfection efficacies of monomeric and gemini lipids in three different cell lines (Caco-2, HEK 293T and HeLa).
Cationic liposomal formulations with ferrocene in its reduced state were observed to be potent transfectants reaching the EGFP expression levels even better than
commercial lipofectamine 2000 in the presence of serum as evidenced by flow cytometry. EGFP expression was further substantiated using fluorescence microscopy studies. All liposomal formulations containing oxidized ferrocene displayed diminished levels of gene expression and interestingly, these results were consistent for each formulation in all the three cell lines. Assessment of EGFP expression mediated by both reduced and oxidized ferrocene containing formulations was also undertaken following cellular internalization of labelled pDNA using confocal microscopy and flow cytometry. Lipoplexes derived from different liposomal formulations with reduced and oxidized ferrocene were characterised using TEM, AFM, zeta potential and DLS measurements. Overall, we demonstrate here controlled gene transfection levels using redox driven, transfection efficient cationic monomeric and gemini lipids.
Chapter 5: Synthesis of ‘Click Chemistry’ Mediated Glycolipids: Their
Aggregation Properties and Interaction with DPPC Membranes
This chapter describes the synthesis and aggregation properties of cholesterol based glycolipids along with their interaction with a model phosphatidylcholine membranes. Three series of non-ionic glycolipids with hydrophobic cholesterol backbone and various monosaccharide and disaccharide sugars as the hydrophilic polar domain have been synthesized. These were conjugated to the cholesteryl backbone via oligooxyethylene spacers of different lengths (n = 1, 3 and 4) using Cu (I) catalyzed Huisgen [3+2] cycloaddition, which is popularly known as „Click Chemistry‟. All the synthetic glycolipids (5a-d, 6a-d and 7a-d) formed vesicular aggregates in aqueous medium as confirmed by TEM and DLS. XRD studies with the cast films of lipids revealed that the bilayer width increased with increase in the length of oligoethylene spacer unit that has been incorporated between the hydrophobic and hydrophilic domains. Also, within the same series containing a particular oligoethylene unit, bilayer widths were found to be more for the lipids containing disaccharides as their headgroup than monosaccharides.
Figure 5. Molecular structures of various cholesterol-based glycolipids. Calorimetry studies of the coaggregates containing naturally occurring 1, 2-dipalmitoylphosphatidylcholine (DPPC) and various mol-% of each of the glycolipids revealed that more than 30 mol-% of glycolipids are required to completely abolish the phase transition of DPPC membranes. These results were further supported by fluorescence anisotropy measurements of the co-aggregates using 1, 6-diphenylhexatriene (DPH) as a probe. Fluorescence anisotropy of the neat vesicles revealed that 9a and 9c were more rigid than DPPC vesicles in the solid-like gel phase, while the glycolipids with longer oxyethylene spacers (n = 3 and 4) were less rigid than the DPPC vesicles.
Chapter 6. Hydrophobic Moiety Decides the Synergistic Increase in Transfection
Efficiency in Cationic Phospholipid/Cationic Lipid mixtures
This chapter describes the effect of inclusion of cationic lipid/cationic gemini lipids into the membranes of a cationic phospholipid on the gene delivery efficiency across HeLa and HEK293T cell lines. Although all the three cationic lipids have the same quaternary ammonium moiety as their headgroup, they differ from each other in terms of their hydrophobic moiety and in the number of cationic headgroups. Chol-N is a cholesterol based monocationic lipid, while 2C14-N and 2C14N-5-N2C14N are monomeric and gemini cationic lipids respectively with pseudoglycerol backbone consisting of tetradecyl (n-C14H29) chains. Each of the three cationic lipids under the current investigation, namely, Chol-N, 2C14-N and 2C14N-5-N2C14N were added in different ratios to EtDMoPC and the resultant mixed membranes were studied for the biophysical characterization and gene delivery efficacies.
Figure 6. Molecular structures of cationic lipids used in this study.
All the formulations were characterized using dynamic light scattering and zeta potential measurements to obtain their hydrodynamic diameters and surface charge properties respectively. Their DNA binding ability was also studied by measuring changes in zeta potential and gel electrophoresis of the lipoplexes formed by the coliposomal formulations and pDNA at different Lipid/DNA weight ratios. The gene delivery efficacies of various formulations were studied in terms of EGFP expression using pEGFP-C3 plasmid DNA in two different cell lines, namely HeLa and HEK293T. In the absence of serum we found that the formulation (EtDMoPC+2C14N-5-N2C14N) showed better transfection efficiency than the individual lipids. However, in the case of others, i.e., (EtDMoPC+Chol-N) and (EtDMoPC+2C14-N) formulations, there was a slight decrease in transfection efficiency compared to the individual lipids. In the presence of serum, the formulations (EtDMoPC+2C14-N) and (EtDMoPC+2C14N-5-N2C14N) showed significantly higher transfection efficacies compared to their individual lipids. Fusion assay using labelled cationic lipid formulations and unlabelled anionic liposomes revealed that lipoplexes prepared from EtDMoPC+ 2C14-N and EtDMoPC+ 2C14N-5-N2C14 exhibited much higher fusogenicity as compared to the lipoplexes prepared using EtDMoPC+Chol-N as well as the individual lipids. Thus, the liposome formulations which showed better transfection activity fused more readily with the anionic liposomes than did the formulations with poorer activity. Overall, we found that the hydrophobic domain of the cationic lipid/cationic gemini lipid that is added to cationic phospholipid has an important role on the transfection efficiency of the mixed formulations. Additionally the cytotoxicity studies revealed that each of these formulations was not significantly toxic making them viable for applications in vivo.
(For structural formula pl see the abstract pdf file)
|
24 |
Swelling and Dye Adsorption Characteristics of Superabsorbent PolymersSharma, Tarun January 2015 (has links) (PDF)
In the current study, SAPs of cationic monomer [2 - (Methacryloyloxy) ethyl] trimethylammonium chloride have been prepared by free radical solution polymerisation with different crosslinkers. They were subjected to repeated cycles of swelling and de-swelling in DI water and NaCl solution. The conductivity of the swelling medium was measured and related to the swelling/de-swelling characteristics of the SAPs. The swelling capacity was also determined in saline solution. The swelling and de-swelling processes were described by first-order kinetics. The SAPs exhibited varied swelling capacity for crosslinkers of the same functionality as well as different functionality. The SAPs were used to adsorb, the dye Orange G at different initial concentrations of the dye. The equilibrium adsorption data followed the Langmuir adsorption isotherms. The SAPs were also used to adsorb three other dyes, Congo red, Amido black and Alizarin cyanine green. They exhibited different adsorption capacity for different dyes. The adsorption phenomenon was found to follow first order kinetics. In the later part of the study, the co-monomers of [2 - (Methacryloyloxy) ethyl] trimethylammonium chloride with zwitter-ionic monomers [2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide and [3-(Methacryloylamino)propyl]dimethyl(3-sulfopropyl)ammonium hydroxide inner salt were prepared in turns at two different concentrations. The effect of the addition of the zwitter-ionic monomers and their concentration of the swelling capacity and dye adsorption capacity was studied. There was no effect on the swelling capacity of the polymers due to either the species of the zwitter-ionic monomer or their concentration. However, there was a reduction in soluble content of the polymers. The dye adsorption capacity decreased at the higher concentration of the zwitter-ionic monomer.
|
25 |
Adsorption kinetics of cationic polyacrylamides on cellulose fibres and its influence on fibre flocculationSolberg, Daniel January 2003 (has links)
<p>The adsorption of cationic polyacrylamide (C-PAM) and silicananoparticles onto a model surface of silicon oxide wascompared with the adsorption of C-PAM to fibres and theirinfluence on flocculation of a fibre suspension. An increase inionic strength affects the polyelectrolyte adsorption indifferent ways for these two systems. With the silica surface,an increase in the ionic strength leads to a continuousincrease in the adsorption. However, on a cellulose fibre, theadsorption increases at low ionic strength (1 to 10 mM NaCl)and then decreases at higher ionic strength (10 to 100 mMNaCl). It was shown that the adsorption of nanoparticles ontopolyelectrolyte-covered surfaces has a great effect on both theadsorbed amount and the thickness of the adsorbed layer. Theresults showed that electrostatic interactions were thedominating force for the interaction between both the fibresand the polyelectrolytes, and between the polyelectrolytes andthe silica particles. Furthermore, at higher NaClconcentrations, a significant non-ionic interaction between thesilicon oxide surface/particles and the C-PAM was observed.</p><p>The adsorption rate of C-PAM onto fibres was rapid andquantitative adsorption was detected in the time range between1 and 8 s at polyelectrolyte addition levels below 0.4 mg/g.Conversely, an increase in the amount of added polymer leads toan increased polymer adsorption up to a quasi-static saturationlevel. However, after a few seconds this quasi-staticsaturation level was significantly lower than the level reachedat electrostaticequilibrium. The adsorbed amountof charges at full surface coverage after 1 to 8 s contact timecorresponded to only 2 % of the total fibre charge, whereasafter 30 minutes it corresponded to 15 % of the total fibrecharge. This shows that a full surface coverage at shortcontact times is not controlled by surface charge. Based onthese results, it is suggested that a combination of anon-equilibrium charge barrier against adsorption and ageometric restriction can explain the difference between theadsorption during 1 to 8 s and the adsorption after 30 minutes.With increasing time, the cationic groups are neutralised bythe charges on the fibre as the polyelectrolyte reconforms to aflat conformation on the surface.</p><p>The addition of a high concentration of C-PAM to a fibresuspension resulted in dispersion rather than flocculation.This behaviour is most likely due to an electrostericstabilisation of the fibres when the polyelectrolyte isadsorbed. Flocculation of the fibre suspension occurred at lowadditions of C-PAM. A maximum in flocculation was found ataround 50 % surface coverage and dispersion occurred above 100% surface coverage. It was also shown that for a given level ofadsorbed polymer, a difference in adsorption time between 1 and2 seconds influenced the flocculation behaviour. An optimum inflocculation at 50 % surface coverage in combination with theimportance of polymer reconformation time at these shortcontact times showed that the C-PAM induced fibre flocculationagrees with La Mer and Healys description of bridgingflocculation.</p><p>A greater degree of flocculation was observed with theaddition of silica nanoparticles to the fibre suspension thanin the single polyelectrolyte system. Flocculation increased asa function of the concentration of added nanoparticles until0.5 mg/g. At higher additions the flocculation decreased againand this behaviour is in agreement with an extended model formicroparticle-induced flocculation. An increase in flocculationwas especially pronounced for the more extended silica-2particles. This effect is attributed to the more extendedpolyelectrolyte layer, since the adsorbed amount wasessentially the same for both silica particles.</p><p>Finally it was found that fines from the wood fibres had asignificant effect on the flocculation. When fines were added,a greater degree of flocculation was detected. Furthermore, itwas also more difficult to redisperse the fibres with polymerin the presence of fines.</p><p><b>Keywords:</b>Adsorption, bridging, cationic polymers,cellulose fibres, electrosteric stabilisation flocculation,ionic strength, nanoparticle, polyelectrolyte, reconformation,retention aids and silica</p>
|
26 |
HOST-GUEST COMPLEXES OF CUCURBIT[7]URIL WITH CATIONIC DRUGS AND AMINO ACID DERIVATIVESGamal Eldin, MONA 26 September 2013 (has links)
The host-guest chemistry between cucurbit[7]uril (CB[7]) and cationic organic guests of medicinal and biological interest are described in this thesis. In the first part, three cationic steroidal neuromuscular blockers (SNMBs) were studied, along with guests that model their monocationic N-alkyl-N-methylheterocyclic (morpholinium, pyrrolidinium and piperidinium) terminal groups of the SNMBs, and dicationic guests in which the two N-methylheterocyclic rings are linked by a decamethylene chain, modelling a variety of NMBs. Other cationic drugs related to acetylcholine processes in neuromuscular blockage were also studied. In the second part, the amino acids lysine, and its mono-, di- and trimethylated and acetylated Nε derivatives, and arginine, and mono- and (symmetric and asymmetric) dimethylarginine, were investigated as guests, along with analogs of arginine. The nature and strength of the complexation between CB[7] and these guests in aqueous solution were determined by 1H NMR spectroscopy and ESI mass spectrometry.
The CB[7] showed high binding affinity (KCB[7] = 106-109 M-1) towards the N-alkyl-N-methylheterocyclic cations with a trend of piperidinium > pyrrolidinium > morpholinium, which reflects the relative hydrophobicities of the guests. The CB[7] forms 1:1 and 2:1 host-guest complexes with dicationic model guests, with the CB[7] initially encapsulating the decamethylene chain. The second CB[7] binds to a terminal site, resulting in electrostatic repulsions with the first CB[7], which are resolved by the translocation of the first CB[7] to the opposite terminal site. This 2:1 binding mode is also observed with CB[7] and the SNMBs, and the trend in KCB[7] with these SNMB terminal sites is comparable to that observed for the monocationic model guests. The other cationic drugs also form stable host-guest complexes with CB[7], and the binding constants displayed dependences on the size, charge, and hydrophobicity of the guests.
The CB[7] exhibits significant selectivity towards different lysine and arginine derivatives, which can be related to the relative hydrophobicity afforded by the methyl substituents and the positioning of the guest within the CB[7] cavity. The 3500-fold selectivity for Nε,Nε,Nε-trimethyllysine over lysine by CB[7] is the highest observed for a synthetic macrocyclic receptor, while a modest selectivity of symmetrical over asymmetrical dimethylarginine by CB[7] is observed. / Thesis (Ph.D, Chemistry) -- Queen's University, 2013-09-26 14:33:40.063
|
27 |
The synthesis and reactivity of cationic terminal borylene complexesPierce, Glesni Angharad January 2010 (has links)
This thesis describes the synthesis, structure/bonding studies and reactivity of cationic terminal borylene complexes. Reactions of the cationic terminal borylene complexes, [CpFe(CO)₂(BNR₂)]⁺[BArf₄]⁻ (R = Cy, ⁱPr) with heteroallenes have been investigated and shown to proceed by initial coordination of the substrate at the electrophilic boron centre. Reaction with isocyanate ultimately forms [CpFe(CO)₂(CNPh)]⁺[BArf₄]⁻ by a net metathesis process. Dicyclohexylcarbodiimide, however, reacts by insertion into the Fe=B bond of the aminoborylene to form [CpFe(CO)₂C(NCy)₂BNR₂]⁺[BArf₄]⁻. An excess of the substrate yields the spirocyclic complex, [CpFe(CO)₂C(NCy)₂B(NCy)₂BNR₂]⁺[BArf₄]⁻ via a second insertion into the B=N bond. Computational studies investigating insertion and metathesis reaction pathways of these aminoborylene complexes are also reported. Reactions of dicyclohexylcarbodiimide with three-coordinate aminoborane and aminoboryl complexes are described. Formation of the first boron guanidinate complexes featuring dihalide substituents, Cy₂NC(NCy)₂BCl₂ and ⁱPr₂NC(NCy)₂BCl₂ by both salt metathesis and carbodiimide insertion routes are reported. The aminoboryl complexes, CpFe(CO)₂B(NPh₂)Cl and CpFe(CO)₂B(NBz₂)Cl have also been synthesized and their reactions with carbodiimides probed. A novel cationic terminal borylene complex, [Cp'Fe(CO)₂(BNⁱPr₂)]⁺ [BArf₄]⁻ featuring a methyl-substituted Cp ring is reported and represents the first structurally characterized isopropyl substituted aminoborylene complex. Substitution of the ancillary carbonyl ligands of cationic terminal borylene complexes has been investigated. Irradiation of the aminoboryl precursor complex, CpFe(CO)₂B(NCy₂)Cl in the presence of trialkylphosphines, PR₃ (PR₃ = PMe₃, PPh₃, P(OMe)₃) yield the mono(phosphine) complexes, CpFe(CO)(PR₃)B(NCy₂)Cl. The mono(substituted) dimer [{CpFe(CO)(BNCy₂)}₂(μ-dmpe)] was also formed from the reaction with the chelating ligand, dmpe. Replacement of the second carbonyl is prevented by the steric bulk of the dicyclohexylamino substituent, and instead [CpFe(CO)(PR₃)₂]⁺Cl⁻ is formed by extrusion of the borylene fragment. The mono(phosphine) ligated cationic terminal borylene complexes, [CpFe(CO)(PR₃)(BNCy₂)]⁺[BArf₄]⁻ were subsequently formed by halide abstraction. Both [CpFe(CO)(PMe₃)(BNCy)₂]⁺[BArf₄]⁻ and the bridging dication [{CpFe(CO)(BNCy₂)}₂(μ-dmpe)]₂⁺[BArf₄]⁻₂ were structurally authenticated. Replacing the bulky cyclohexyl groups of the aminoboryl precursor for methyl groups allowed synthesis of the bis(substituted) complexes, CpFe(PMe₃)₂B(NMe₂)Cl and CpFe(dmpe)B(NMe₂)Cl. Extraction of these complexes into dichloromethane resulted in formation of the borylene, [CpFe(PMe₃)₂(BNMe₂)]⁺Cl⁻ and [CpFe(dmpe)(BNMe₂)]⁺Cl⁻ by spontaneous halide ejection.
|
28 |
Vers une chimie plus douce : de nouveaux systèmes photoamorceurs hautes performances pour la polymérisation radicalaire, cationique et anionique dans les conditions plus respectueuses de l'environnement / Towards a softer chemistry : new high performance photoinitiating systems for radical, cationic and anionic polymerization in environment-friendlier conditionsZerelli, Mariem 20 September 2017 (has links)
De nos jours, la polymérisation par voie photochimique connaît un grand essor dans différents domaines académiques et industriels comme en témoigne son nombre croissant d’applications. Les photopolymères sont omniprésents dans plusieurs domaines tels que les revêtements, le domaine dentaire, les implants chirurgicaux, les encres, l’impression 3D… Cependant, les avancées réalisées par rapport à cette voie de synthèse de matériaux polymères restent limitées et nécessitent encore plus de recherches et de développements. Cette nouvelle génération de polymères synthétisée par voie photochimique présente l’avantage d’être beaucoup plus écologique que leurs équivalents thermiques. En effet, leur préparation implique moins d’énergie que les autres techniques de synthèse de matériaux polymères. L’élaboration de polymères par voie photochimique est également plus avantageuse en termes de temps nécessaire pour la polymérisation. Moins de composés organiques volatils sont émis car la formulation ne contient que très peu voire pas du tout de solvant. Seules les zones irradiées sont polymérisées ce qui permet d’avoir un bon contrôle spatial de la polymérisation.De nombreuses recherches ont déjà été menées dans ce domaine en utilisant principalement les rayons ultraviolets. Cependant, cette gamme de longueurs d’onde peut être nocive pour la santé. De surcroît, les sources de rayonnement UV sont très énergivores et potentiellement toxiques. Par conséquent, cette technique risque de ne plus aller de pair avec les exigences environnementales actuelles. En parallèle, peu de systèmes photoamorceurs ont montré leur efficacité dans le domaine des longueurs d’onde du visible car ils nécessitent souvent des énergies beaucoup plus élevées.C’est ainsi que l’on s’est intéressé dans le cadre de cette thèse au développement de nouveaux systèmes photoamorceurs plus respectueux de l’environnement et plus efficaces pour amorcer les réactions de polymérisations radicalaire ou cationique sous lumière visible (conditions douces).La lumière visible présente plusieurs avantages par rapport à la lumière ultra-violette. En effet, une faible nocivité a été constatée ainsi qu’une faible consommation énergétique. Plusieurs dispositifs d’irradiation dans le visible ont été utilisés : des lampes halogènes, des diodes électroluminescentes (LED) … Plus intéressant encore, l’utilisation des LED émettant dans la gamme du visible présente un grand intérêt. Elles sont caractérisées par une faible consommation énergétique, un faible coût, une longue durée de vie, une forme compacte …L’utilisation des LED nécessite clairement d’améliorer la performance des systèmes photoamorceurs. Ainsi, l’étude de l’efficacité de nouveaux systèmes photoamorceurs pour la polymérisation radicalaire et/ou cationique sous irradiation de lumière visible à l’aide des LED est au cœur de ce présent sujet de thèse. Notre projet de développement des nouveaux photoamorceurs visibles se base essentiellement sur les approches suivantes : • Une bonne absorption de la lumière visible par les photoamorceurs (avec des coefficients d’extinction molaires élevés)• Un bon recouvrement entre le spectre d’absorption du nouveau photoamorceur et celui d’émission de la source d’irradiation utilisée• Utilisation de sources d’irradiation à faibles intensités (LED)• Développer des photoamorceurs hydrosolubles et efficaces pour amorcer les polymérisations dans l’eauPour les travaux menés au cours de cette thèse, on s’est intéressé à différentes familles de photoamorceurs afin d’établir la relation entre la structure, la réactivité et l’efficacité d’amorçage de réactions de polymérisation radicalaire, cationique ou pour la formation de réseaux interpénétrés de polymères.Ces travaux se divisent en deux grandes parties: une première est à caractère académique tandis qu’une seconde partie porte sur une étude appliquée dans le domaine dentaire. [...] / Nowadays, the photopolymerization processes are omnipresent in various academic and industrial fields such as the dental domain, surgical implants, 3D printing … However, the advances realized for this new way of polymer synthesis remain limited and require more developments.The polymers synthesized by photochemical process have the advantage of being more ecological than the thermal equivalents. Indeed, their preparation involves less energy than the other techniques of polymer synthesis. The elaboration of polymers by photochemical way is also more advantageous in terms of time required for the polymerization and fewer volatile organic compounds are emitted in the atmosphere. Moreover, only the irradiated zones are polymerized which allows a better spatial control of the polymerization. Several searches were already led in this domain by using mainly ultraviolet rays. However, this range of wavelengths could be harmful for the health. Besides, the UV sources are energy consuming. Consequently, this technique is no longer in agreement with the current environmental requirements. In parallel, few photoinitiating systems showed good efficiency in the visible wavelength range.In this context, we have been interested in the development of new photoinitiating systems more environment-friendly and more efficient to initiate radical, cationic and anionic polymerization under visible light irradiation.The visible light presents several advantages compared to the ultraviolet light. Indeed, it is less harmful and lower energy consuming. Particularly, light emitting diodes (LED) are interesting because they are compact and therefore easy to use, long lasting, no mercury is involved for the manufacturing … Thus, the performances improvement of the photoinitiating systems efficient upon visible LED irradiation is clearly required In this regard, the study of new high performances photoinitiating systems for radical, cationic and anionic polymerization under visible LED irradiation is at the core of the current PhD project.Our development project was based essentially on the following approaches: • Good absorption properties of the developed photoinitiators • The best matching between the absorption spectrum of the photoinitiator and the emission spectrum of the irradiation device• Use of LEDs • Development of water soluble photoinitiators for photopolymerization processes in aqueous medium.We were interested in various chromophore families in order to establish the relationship between the structure, the reactivity and the efficiency of the developed photoinitiating systems.The results obtained could be divided into two big parts: the first one has an academic character whereas the second part concerns an applied study in the dental domain.For the first part, various families of visible chromophores were introduced as high performances photoinitiators for radical photopolymerization in the visible range: i) camphorquinone derivatives ii) acylsilanes iii) naphthalimides iv) diketopyrrolopyrroles. Cationic photopolymerization has been studied also through the development of a new iodonium salt and across the use of new photoredox catalysts upon visible LED irradiation. And finally, new photobase generators have been developed for anionic polymerization upon near UV and visible LED irradiation.In the second part, a new class of photoinitiators based on silylglyoxylate structure have been introduce as efficient systems for the radical photopolymerization initiation process upon blue light and applied for the dental field. [...]
|
29 |
Estudo teórico sobre corantes catiônicos e possíveis modelos que expliquem a interação com a argila do tipo montmorilonita. / Theoretical study on cationic dyes and models that explain the interaction with the montmorillonite clayMello, Paula Homem de 22 February 2006 (has links)
Neste trabalho, são utilizados diversos métodos de química teórica para estudar as propriedades eletrônicas e o espectro de absorção de seis corantes catiônicos: laranja de acridina (LA), proflavina (PF), safranina (SF), vermelho neutro (VN), azul de metileno (AM) e tionina (TN). Inicialmente é realizado um estudo para verificar a influência do solvente na geometria e no espectro desses corantes utilizando diversos métodos de química quântica, o método de solvatação contínuo IEFPCM e a simulação de Monte Carlo (MC). A seguir são estudados a diprotonação, a dimerização e alguns modelos para a argila do tipo montmorilonita e para a interação desta com os corantes, fenômenos esses que explicam a metacromasia observada experimentalmente. / This work presents a theoretical study on the electronic properties and the absorption spectra of six cationic dyes: acridine orange, proflavine, safranine, neutral red, methylene blue and thionine. First of all, we have carried out calculations to verify the solvent effects on geometries and spectra employing methods of Quantum Chemistry and including solvent effects with the polarizable continnum model and Monte Carlo (MC) simulation. Also, we have studied diprotonation, dimerization and some models of the montmorillonite clay and its interaction with the cationic dyes under study here, phenomena that explain the experimental methacromatic behavior of these dyes.
|
30 |
Experimental and theoretical investigations of active center generation and mobility in cationic and free-radical photopolymerizationsHoppe, Cynthia Caroline 01 May 2010 (has links)
Photopolymerization is considered an attractive alternative in many industries to traditional polymerization processes. The advantages of photopolymerization over other types of polymerization include elimination of heat sources, faster cure times, and reduction in the use of volatile organic solvents. Despite these environmental and cost-saving advantages, photopolymerizations have several limitations. Light attenuation can be a problem for systems containing pigments or fillers. The radiation source penetrates only to a shallow depth beneath the surface, limiting the thickness of strongly pigmented or filled coatings and films. Photopolymerization is also generally limited to systems with simple geometries that can be uniformly illuminated. Coatings on three-dimensional substrates, or other systems with complex geometries, are difficult to uniformly cure. These problems can be solved by "shadow cure," which is defined as the reactive diffusion of photoinitiated active centers into regions of a polymer that are unilluminated. In this contribution, the generation and subsequent spatial and temporal evolution of the active center concentrations during illumination are analyzed using the differential equations that govern the light intensity gradient and photoinitiator concentration gradient for polychromatic illumination. Reactive diffusion of the active centers during the post-illumination period is shown to result in cure of unilluminated regions. A kinetic analysis is performed by coupling the active center concentration profiles with the propagation rate equation, yielding predicted cure times for a variety of applications. This analysis is used for the evaluation of cationic shadow cure in pigmented photopolymerization systems, and systems with complex geometries. The extensive characterization of cationic systems is then applied to free-radical photopolymerization to examine the potential of shadow cure for active centers with much shorter lifetimes. An example of a free-radical photopolymerization system is characterized in which the dimensional scales are small enough to utilize the short lifetimes of the active centers. The results presented for both free-radical and cationic shadow cure indicate that the reactive diffusion of photoinitiated active centers may be used for effective cure in unilluminated regions of a photopolymer. This research will potentially allow photopolymerization to be applied in industries where it has never before been utilized.
|
Page generated in 0.0927 seconds