81 |
Sur le modèle de Kerr-Debye pour la propagation des ondes électromagnétiquesKanso, Mohamed 01 October 2012 (has links)
Dans cette thèse on étudie des systèmes d’EDP non linéaires modélisant la propagation électromagnétique dans des milieux de type Kerr. On considère deux modèles. Le premier dit de Kerr-Debye, suppose un temps de réponse non nul du matériau à l’onde électromagnétique. Le second, dit de Kerr, suppose une réponse instantanée. On est ainsi confronté à des systèmes de relaxation tels que définis par Chen-Levermore-Liu (CPAM 1994). Nous établissons ici des résultats d’existence globale de solutions fortes à données petites en 3D pour le problème de Cauchy et un problème mixte. Puis nous construisons des schémas volumes finis asymptotic preserving et nous étudions leurs performances sur des cas physiques. / In this thesis, we study non-linear PDE systems modeling the electromagnetic propagation in Kerr media. We consider two models. The first one is the Kerr-Debye model, it assumes a finite response time of the medium. The second one is the Kerr model, it assumes an instantaneous response. We deal with relaxation systems as defined by Chen-Levermore-Liu (CPAM 1994). For small data, we establish results of global existence of smooth solutions in 3D for the Cauchy problem and the IBVP. Then we investigate asymptotic preserving finite volume schemes and we study their performance on physical cases.
|
82 |
Reprezentace řešení autonomních lineárních diskrétních systémů a jejich aplikace v teorii řízení / Representations of Solutions to Autonomous Linear Discrete Systems and Their Applications in the Control TheoryMencáková, Kristýna January 2020 (has links)
Disertační práce se zabývá soustavou lineárních diskrétních rovnic se zpožděním a řeší Cauchyovu úlohu s danou počáteční podmínkou užitím zde definovaných maticových funkcí. Odvozený vzorec je pak použit při řešení úlohy relativní řiditelnosti této soustavy. Je dokázáno kritérium řiditelnosti soustavy, nalezena množina všech řídicí funkcí a minimální funkce vyhovující dané úloze.
|
83 |
Etude d'équations aux dérivées partielles stochastiques / Study on stochastic partial differential equationsBauzet, Caroline 26 June 2013 (has links)
Cette thèse s’inscrit dans le domaine mathématique de l’analyse des équations aux dérivées partielles (EDP) non-linéaires stochastiques. Nous nous intéressons à des EDP paraboliques et hyperboliques que l’on perturbe stochastiquement au sens d’Itô. Il s’agit d’introduire l’aléatoire via l’ajout d’une intégrale stochastique (intégrale d’Itô) qui peut dépendre ou non de la solution, on parle alors de bruit multiplicatif ou additif. La présence de la variable de probabilité ne nous permet pas d’utiliser tous les outils classiques de l’analyse des EDP. Notre but est d’adapter les techniques connues dans le cadre déterministe aux EDP non linéaires stochastiques en proposant des méthodes alternatives. Les résultats obtenus sont décrits dans les cinq chapitres de cette thèse : Dans le Chapitre I, nous étudions une perturbation stochastique des équations de Barenblatt. En utilisant une semi- discrétisation implicite en temps, nous établissons l’existence et l’unicité d’une solution dans le cas additif, et grâce aux propriétés de la solution nous sommes en mesure d’étendre ce résultat au cas multiplicatif à l’aide d’un théorème de point fixe. Dans le Chapitre II, nous considérons une classe d’équations de type Barenblatt stochastiques dans un cadre abstrait. Il s’agit là d’une généralisation des résultats du Chapitre I. Dans le Chapitre III, nous travaillons sur l’étude du problème de Cauchy pour une loi de conservation stochastique. Nous montrons l’existence d’une solution par une méthode de viscosité artificielle en utilisant des arguments de compacité donnés par la théorie des mesures de Young. L’unicité repose sur une adaptation de la méthode de dédoublement des variables de Kruzhkov.. Dans le Chapitre IV, nous nous intéressons au problème de Dirichlet pour la loi de conservation stochastique étudiée au Chapitre III. Le point remarquable de l’étude repose sur l’utilisation des semi-entropies de Kruzhkov pour montrer l’unicité. Dans le Chapitre V, nous introduisons une méthode de splitting pour proposer une approche numérique du problème étudié au Chapitre IV, suivie de quelques simulations de l’équation de Burgers stochastique dans le cas unidimensionnel. / This thesis deals with the mathematical field of stochastic nonlinear partial differential equations’ analysis. We are interested in parabolic and hyperbolic PDE stochastically perturbed in the Itô sense. We introduce randomness by adding a stochastic integral (Itô integral), which can depend or not on the solution. We thus talk about a multiplicative noise or an additive one. The presence of the random variable does not allow us to apply systematically classical tools of PDE analysis. Our aim is to adapt known techniques of the deterministic setting to nonlinear stochastic PDE analysis by proposing alternative methods. Here are the obtained results : In Chapter I, we investigate on a stochastic perturbation of Barenblatt equations. By using an implicit time discretization, we establish the existence and uniqueness of the solution in the additive case. Thanks to the properties of such a solution, we are able to extend this result to the multiplicative noise using a fixed-point theorem. In Chapter II, we consider a class of stochastic equations of Barenblatt type but in an abstract frame. It is about a generalization of results from Chapter I. In Chapter III, we deal with the study of the Cauchy problem for a stochastic conservation law. We show existence of solution via an artificial viscosity method. The compactness arguments are based on Young measure theory. The uniqueness result is proved by an adaptation of the Kruzhkov doubling variables technique. In Chapter IV, we are interested in the Dirichlet problem for the stochastic conservation law studied in Chapter III. The remarkable point is the use of the Kruzhkov semi-entropies to show the uniqueness of the solution. In Chapter V, we introduce a splitting method to propose a numerical approach of the problem studied in Chapter IV. Then we finish by some simulations of the stochastic Burgers’ equation in the one dimensional case.
|
84 |
Contributions aux équations d'évolutions non locales en espace-temps / Contributions to non local evolution equations in space-timeDannawi, Ihab 11 September 2015 (has links)
Dans cette thèse, nous nous intéressons à l'étude de quatre équations d'évolution non-locales. Les solutions de ces quatre équations peuvent exploser en temps fini. Dans la théorie des équations d'évolution non-linéaires, une solution est qualifiée de globale si elle est définie pour tout temps positif. Au contraire, si une solution existe seulement sur un intervalle de temps [0; T) borné, elle est dite locale. Dans ce dernier cas et quand le temps maximal d'existence est relié à une alternative d'explosion, on dit aussi que la solution explose en temps fini. Dans un premier travail, nous considérons l'équation de Schrödinger non-linéaire avec une puissance fractionnaire du laplacien, et nous obtenons l'explosion de la solution en temps fini Tmax > 0 pour toute condition initiale positive et non-triviale dans le cas d'exposant sous-critique. Ensuite, nous étudions une équation des ondes amorties avec un potentiel d'espace-temps et un terme non-linéaire et non-local en temps. Nous obtenons un résultat d'existence locale d'une solution dans l'espace d'énergie sous des conditions restrictives sur les données initiales, la dimension de l'espace et la croissance du terme non-linéaire. De plus, nous obtenons l'explosion de la solution en temps fini pour toute condition initiale de moyenne strictement positive. De plus, nous étudions un problème de Cauchy pour l'équation d'évolution avec un p- Laplacien avec une non linéarité non-locale en temps. Dans ce cadre, nous nous intéressons à l'étude de l'existence locale d'une solution de cette équation ainsi qu'un résultat de non-existence de solution globale. Finalement, nous étudions l'intervalle maximal d'existence des solutions de l'équation des milieux poreux avec un terme non-linéaire non-local en temps. / In this thesis, we study four non-local evolution equations. The solutions of these four equations can blow up in finite time. In the theory of nonlinear evolution equations, a solution is qualified as global if it isdefined for any time. Otherwise, if a solution exists only on a bounded interval [0; T), it is called local solution. In this case and when the maximum time of existence is related to a blow up alternative, we say that the solution blows up in finite time. First, we consider the nonlinear Schröodinger equation with a fractional power of the Laplacien operator, and we get a blow up result in finite time Tmax > 0 for any non-trivial non-negative initial condition in the case of sub-critical exponent. Next, we study a damped wave equation with a space-time potential and a non-local in time non-linear term. We obtain a result of local existence of a solution in the energy space under some restrictions on the initial data, the dimension of the space and the growth of nonlinear term. Additionally, we get a blow up result of the solution in finite time for any initial condition positive on average. In addition, we study a Cauchy problem for the evolution p-Laplacien equation with nonlinear memory. We study the local existence of a solution of this equation as well as a result of non-existence of global solution. Finally, we study the maximum interval of existence of solutions of the porous medium equation with a nonlinear non-local in time term.
|
85 |
Uopštena rešenja nekih klasa frakcionih parcijalnih diferencijalnih jednačina / Generalized Solutions for Some Classes of Fractional Partial Diferential EquationsJapundžić Miloš 26 December 2016 (has links)
<p>Doktorska disertacija je posvećena rešavanju Košijevog problema odabranih klasa frakcionih diferencijalnih jednačina u okviru Kolomboovih prostora uopštenih funkcija. U prvom delu disertacije razmatrane su nehomogene evolucione jednačine sa prostorno frakcionim diferencijalnim operatorima reda 0 < α < 2 i koeficijentima koji zavise od x i t. Ova klasa jednačina je aproksimativno rešavana, tako što je umesto početne jednačine razmatrana aproksimativna jednačina data preko regularizovanih frakcionih izvoda, odnosno, njihovih regularizovanih množitelja. Za rešavanje smo koristili dobro poznate uopštene uniformno neprekidne polugrupe operatora. U drugom delu disertacije aproksimativno su rešavane nehomogene frakcione evolucione jednačine sa Kaputovim<br />frakcionim izvodom reda 0 < α < 2, linearnim, zatvorenim i gusto definisanim<br />operatorom na prostoru Soboljeva celobrojnog reda i koeficijentima koji zavise<br />od x. Odgovarajuća aproksimativna jednačina sadrži uopšteni operator asociran sa polaznim operatorom, dok su rešenja dobijena primenom, za tu svrhu <br />u disertaciji konstruisanih, uopštenih uniformno neprekidnih operatora rešenja.<br />U oba slučaja ispitivani su uslovi koji obezbeduju egzistenciju i jedinstvenost<br />rešenja Košijevog problema na odgovarajućem Kolomboovom prostoru.</p> / <p>Colombeau spaces of generalized functions. In the firs part, we studied inhomogeneous evolution equations with space fractional differential operators of order 0 < α < 2 and variable coefficients depending on x and t. This class of equations is solved approximately, in such a way that instead of the originate equation we considered the corresponding approximate equation given by regularized fractional derivatives, i.e. their regularized multipliers. In the solving procedure we used a well-known generalized uniformly continuous semigroups of operators. In the second part, we solved approximately inhomogeneous fractional evolution equations with Caputo fractional derivative of order 0 < α < 2, linear, closed and densely defined operator in Sobolev space of integer order and variable coefficients depending on x. The corresponding approximate equation is a given by the generalized operator associated to the originate operator, while the solutions are obtained by using generalized uniformly continuous solution operators, introduced and developed for that purpose. In both cases, we provided the conditions that ensure the existence and uniqueness solutions of the Cauchy problem in some Colombeau spaces.</p>
|
Page generated in 0.0599 seconds