• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 21
  • 18
  • 10
  • 2
  • 1
  • Tagged with
  • 154
  • 154
  • 52
  • 34
  • 34
  • 29
  • 23
  • 22
  • 19
  • 18
  • 16
  • 15
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

From cells to tissues

Merkel, Matthias 02 December 2014 (has links) (PDF)
An essential prerequisite for the existence of multi-cellular life is the organization of cells into tissues. In this thesis, we theoretically study how large-scale tissue properties can emerge from the collective behavior of individual cells. To this end, we focus on the properties of epithelial tissue, which is one of the major tissue types in animals. We study how rheological properties of epithelia emerge from cellular processes, and we develop a physical description for the dynamics of an epithelial cell polarity. We apply our theoretical studies to observations in the developing wing of the fruit fly, Drosophila melanogaster. In order to study epithelial mechanics, we first develop a geometrical framework that rigorously describes the deformation of two-dimensional cellular networks. Our framework decomposes large-scale deformation into cellular contributions. For instance, we show how large-scale tissue shear decomposes into contributions by cell shape changes and into contributions by different kinds of topological transitions. We apply this framework in order to quantify the time-dependent deformation of the fruit fly wing, and to decompose it into cellular contributions. We also use this framework as a basis to study large-scale rheological properties of epithelia and their dependence on cellular fluctuations. To this end, we represent epithelial tissues by a vertex model, which describes cells as elastic polygons. We extend the vertex model by introducing fluctuations on the cellular scale, and we develop a method to perform perpetual simple shear simulations. Analyzing the steady state of such simple shear simulations, we find that the rheological behavior of vertex model tissue depends on the fluctuation amplitude. For small fluctuation amplitude, it behaves like a plastic material, and for high fluctuation amplitude, it behaves like a visco-elastic fluid. In addition to analyzing mechanical properties, we study the reorientation of an epithelial cell polarity. To this end, we develop a simple hydrodynamic description for polarity reorientation. In particular, we account for polarity reorientation by tissue shear, by another polarity field, and by local polarity alignment. Furthermore, we develop methods to quantify polarity patterns based on microscopical images of the fly wing. We find that our hydrodynamic description does not only account for polarity reorientation in wild type fly wings. Moreover, it is for the first time possible to also account for the observed polarity patterns in a number of genetically altered flies. / Eine wesentliche Voraussetzung für die Existenz mehrzelligen Lebens ist, dass sich einzelne Zellen sinnvoll zu Geweben ergänzen können. In dieser Dissertation untersuchen wir, wie großskalige Eigenschaften von Geweben aus dem kollektiven Verhalten einzelner Zellen hervorgehen. Dazu konzentrieren wir uns auf Epitheliengewebe, welches eine der Grundgewebearten in Tieren darstellt. Wir stellen theoretische Untersuchungen zu rheologischen Eigenschaften und zu zellulärer Polarität von Epithelien an. Diese theoretischen Untersuchungen vergleichen wir mit experimentellen Beobachtungen am sich entwickelnden Flügel der schwarzbäuchigen Taufliege (Drosophila melanogaster). Um die Mechanik von Epithelien zu untersuchen, entwickeln wir zunächst eine geometrische Beschreibung für die Verformung von zweidimensionalen zellulären Netzwerken. Unsere Beschreibung zerlegt die mittlere Verformung des gesamten Netzwerks in zelluläre Beitrage. Zum Beispiel wird eine Scherverformung des gesamten Netzwerks auf der zellulären Ebene exakt repräsentiert: einerseits durch die Verformung einzelner Zellen und andererseits durch topologische Veränderungen des zellulären Netzwerks. Mit Hilfe dieser Beschreibung quantifizieren wir die Verformung des Fliegenflügels während des Puppenstadiums. Des Weiteren führen wir die Verformung des Flügels auf ihre zellulären Beiträge zurück. Wir nutzen diese Beschreibung auch als Ausgangspunkt, um effektive rheologische Eigenschaften von Epithelien in Abhängigkeit von zellulären Fluktuationen zu untersuchen. Dazu simulieren wir Epithelgewebe mittels eines Vertex Modells, welches einzelne Zellen als elastische Polygone abstrahiert. Wir erweitern dieses Vertex Modell um zelluläre Fluktuationen und um die Möglichkeit, Schersimulationen beliebiger Dauer durchzuführen. Die Analyse des stationären Zustands dieser Simulationen ergibt plastisches Verhalten bei kleiner Fluktuationsamplitude und visko-elastisches Verhalten bei großer Fluktuationsamplitude. Neben mechanischen Eigenschaften untersuchen wir auch die Umorientierung einer Zellpolarität in Epithelien. Dazu entwickeln wir eine einfache hydrodynamische Beschreibung für die Umorientierung eines Polaritätsfeldes. Wir berücksichtigen dabei insbesondere Effekte durch Scherung, durch ein anderes Polaritätsfeld und durch einen lokalen Gleichrichtungseffekt. Um unsere theoretische Beschreibung mit experimentellen Daten zu vergleichen, entwickeln wir Methoden um Polaritätsmuster im Fliegenflügel zu quantifizieren. Schließlich stellen wir fest, dass unsere hydrodynamische Beschreibung in der Tat beobachtete Polaritätsmuster reproduziert. Das gilt nicht nur im Wildtypen, sondern auch in genetisch veränderten Tieren.
142

Nuclear transport and regulation of the tumor suppressor LKB1

Dorfman, Julia. January 2008 (has links)
Thesis (Ph. D.)--University of Virginia, 2008. / Title from title page. Includes bibliographical references. Also available online through Digital Dissertations.
143

Wnt-11 signaling roles during heart and kidney development

Nagy, I. I. (Irina I.) 27 May 2014 (has links)
Abstract Organogenesis involves precursor cells proliferation, differentiation along with their coordinated organization into precise multicellular arrangements by planar cell polarity (PCP) pathways. The beta-catenin independent/non-canonical type of Wnt-11 signaling has been known as a PCP modulator during development. In this thesis were analyzed the roles of Wnt-11 in heart and kidney development by using in vivo functional genomics technologies. We show that the Wnt-11 gene is important for murine ventricular myocardium development, since Wnt-11 deficiency in early cardiogenesis leads to impaired organization and maturation of mouse ventricular cardiomyocytes, causing primary cardiomyopathy with in utero lethality. Wnt-11 coordinates the co-localized expression of the cell adhesion molecules N-cadherin and β-catenin, which are critical for the spatially specific organization of cardiomyocytes. We show that Wnt-11 deficiency causes primary hypertrophic and noncompaction cardiomyopathy in adult mice, with consequences for regional myocardium function. The Wnt family of secreted signals has been implicated in kidney tubule development and tubular cystic diseases such as polycystic kidney disease. We show here that Wnt-11 is expressed in mature nephrons and is involved in late steps of nephrogenesis, since the kidney tubule organization is deregulated in Wnt-11 deficient kidneys, to enlarged lumen with increased convolution. These tubule abnormalities are associated with glomerular microcyst formation and kidney failure. Wnt-11 deficiency reduced significantly Wnt-9b expression, a critical signal for PCP-mediated kidney tubule elongation. In the cortical region this associated with reduced expression of nephron and stromal progenitor cell marker. The results in this thesis point out that Wnt-11 function is required for proper myocardium organization and maturation as well as proper morphogenesis of the kidney tubules during the embryonic and postnatal developmental stages. Wnt-11 knockout phenotypes depend on the genetic background, similarly to human congenital disease. This data may be relevant for human congenital cardiomyopathy and glomerulocystic kidney disease studies. / Tiivistelmä Alkion sisäelinten kehityksen aikana esisolut lisääntyvät ja erilaistuvat muodostaen tarkoin määriteltyjä monisoluisia rakenteita. Muodostuvan kudosrakenteen määrittelyssä erilaiset solusignaalit ovat keskeisessä asemassa. Yksi näistä on nk. Wnt signaali perhe. Wnt perheeen jäsen Wnt-11 tehtävät on huonosti tunnettu. Wnt-11 viestittää ilmeisesti nk. planaaristen solupolariteettireittien (PCP) avulla, joka on beeta-kateniinista riippumattoman nk. ei-kanonisen Wnt signaali. Väitöskirjatyössä selvitettiin Wnt-11:n vaikutuksia sydämen ja munuaisten kehitykseen in vivo funktionaalisten genomisten menetelmien avulla. Ihmisen synnynnäiset kardiomyopatiat ovat sydänlihaksen ensisijaisia vaurioita, joiden taustalla on sydänlihaksen kehityshäiriö. Tutkimuksessa osoitetaan, että Wnt-11-geenillä on tärkeä merkitys hiiren sydänkammion kehitykselle, koska Wnt-11-geenin puute sydämen varhaisen kehityksen vaiheessa johtaa sydänlihassolujen järjestäytymisen ja kypsymisen häiriintymiseen, jolloin seurauksena on ensisijaisesta kardiomyopatiasta johtuva sikiökuolema. Wnt-11 koordinoi kahden solukiinnitysmolekyylin, N-kadheriinin ja β-kateniinin, samanaikasta ilmentymistä. Kyseiset molekyylit ovat keskeisen tärkeitä sydänlihasssolujen spatiaalisen järjestäytymisen kannalta. Tutkimuksessa osoitetaan, että Wnt-11-puutos aiheuttaa aikuisilla hiirillä ensisijaista sydänlihaksen liikakasvua ja trabekuloivaa kardiomyopatiaa, mikä vaikuttaa sydänlihaksen toimintaan. Tuloksilla voi olla merkitystä tutkittaessa ihmisen synnynnäisiä kardiomyopatioita. Wnt-signaaliperheen on osoitettu olevan yhteydessä munuaisputken kehitykseen ja sen sairauksiin, kuten munuaisten monirakkulatautiin. Väitöstutkimuksessa osoitetaan, että Wnt-11 ilmentyy kypsissä nefroneissa ja että se osallistuu nefrogeneesiin myöhempiin vaiheisiin, koska munuaisputken kehityksen säätely on poikkeavaa niissä munuaisissa, joista Wnt-11 puuttuu. Seurauksena on laajentunut, normaalia poimuttuneempi luumen. Munuaisputken poikkeavuuksilla oli yhteyttä munuaiskerästen mikrokystien muodostumiseen sekä munuaisten vajaatoimintaan. Wnt-11 -puute vähensi huomattavasti Wnt-9b-ilmentymistä, joka on PCP-välitteisen munuaisputken pidentymisen kannalta keskeisen tärkeä signaali. Kortikaalialueella Wnt9b:n vaimennussäätely liittyi poikkeavaan solujen lisääntymiseen, apoptoosiin ja kypsymiseen sekä vähentyneeseen nefroni- ja stroomakantasolujen merkkiaineen ilmentymiseen. Väitöskirjatutkimuksen tulokset viittaavat siihen, että Wnt-11 -toiminto on välttämätön sydänlihaksen normaalin muodostumisen ja kypsymisen sekä munuaisputken normaalin morfogeneesin kannalta sikiövaiheen ja syntymän jälkeisen kehityksen aikana. Wnt-11 -poistogeenisen hiiren fenotyypi riippuu geneettisestä tausta, samaan tapaan kuin ihmisen synnynnäisissä sairauksissa. Väitöstutkimuksesta saatavalla tiedolla voi olla merkitystä tutkittaessa ihmisen synnynnnäistä kardiomyopatiaa ja munuaisten monirakkulatautia.
144

Role of Wnt4 signaling in mammalian sex determination, ovariogenesis and female sex duct differentiation

Prunskaite-Hyyryläinen, R. (Renata) 20 May 2014 (has links)
Abstract Mammalian female sex development was considered a default developmental pathway. However, the deletion of the Wnt4 gene, a member of the Wnt family of secreted signals, was shown to reverse the sex of XX female mouse embryo and caused exhibition of certain male characteristics. This indicated that the female sexual development cannot be default but depends on active signaling and cell-cell interaction. The aim of the current study was to reveal the functional role of the Wnt4 gene in the control of sex determination, ovariogenesis and female sex duct formation. This study demonstrates that testosterone is produced by the ovary of Wnt4-deficient female embryos. The inhibition of androgen action by an antiandrogen, flutamide, during gestation leads to complete degeneration of the Wolffian ducts in 80% of the Wnt4 mutant females. This suggests that testosterone is the possible mediator of the masculinization phenotype in Wnt4-deficient females. Wnt4 is expressed by ovarian somatic cells, which are vital for the control of female germline development. This work has shown that Wnt4 is the factor maintaining germ cell cysts, cell-cell interaction and early follicular gene expression. In addition, the findings indicate a critical role for Wnt4/5a signaling in meiosis. Our research has proven that Wnt4 has roles during postnatal ovary development as its defective signaling leads to premature ovarian failure associated with diminished Amh levels, defective basement membrane and cell polarization. The Mullerian duct, the anlagen of oviduct, uterus and upper part of vagina, does not form in Wnt4-deficient females. This study indicates that Wnt4 is needed for migration initiation and maintenance during Mullerian duct formation prenatally. During the postnatal uterine differentiation Wnt4 is essential for endometrial gland formation. The present study provides new evidence for Wnt4 function during embryonic and adult female sexual differentiation. / Tiivistelmä Nisäkkäiden naaraspuolista kehitystä pidettiin aiemmin sukupuolisen erilaistumiskehityksen oletusarvona. Signaloivien proteiinien Wnt-perheeseen kuuluvan Wnt4-geenin puutteen todettiin kuitenkin johtavan XX naarasalkion sukupuolen kääntymisen koiraaksi sekä aiheuttavan tiettyjä koiraille ominaisia piirteitä. Tämä osoitti, ettei naaraspuolinen kehitys ole oletusarvo, vaan se riippuu aktiivisesta signaloinnista ja solujen välisestä interaktiosta. Tämän väitöstutkimuksen tarkoitus oli selvittää Wnt4-geenin roolia sukupuolen määräytymisessä, munasarjojen kehittymisessä sekä naaraan sukupuolitiehyitten muodostumisessa. Tutkimuksessa osoitettiin, että munasarjat tuottavat testosteronia niillä naaraspuolisilla alkioilla, joilta puuttuu Wnt4-geeni. 80 prosentilla naaraista, joilla on Wnt4-geenin puute, androgeenivaikutuksen esto raskauden aikana annettavalla antiandrogeenilla, flutamidilla, estää sukupuolen vaihtumisen fenotyypin. Tämä viittaa siihen, että testosteroni toimii mahdollisena koiraan fenotyypin välittäjänä naarailla, joilta puuttuu Wnt4-geeni. Wnt4 ilmentyy munasarjojen somaattisissa soluissa, jotka ovat tärkeitä naaraspuolisen ituradan kehityksen säätelyn kannalta. Väitöstutkimus osoittaa, että Wnt4 on itusoluryppäitä, solujen välistä interaktiota sekä varhaista follikkeligeeni-ilmentymistä ylläpitävä tekijä. Tulokset osoittavat myös, että Wnt4/5a -signaloinnilla on tärkeä rooli meioosissa. Tutkimus osoittaa lisäksi, että Wnt4 vaikuttaa munasarjojen kehitykseen myös syntymän jälkeen. Puutteellinen signalointi alentaa Anti-Müllerian hormonin tasoa, heikentää tyvikalvoa ja vähentää solujen polarisaatiota, joka johtaa ennenaikaiseen munasarjojen toiminnan hiipumiseen. Müllerin tiehyet, joista myöhemmin kehittyvät munanjohtimet, kohtu ja vaginan yläosa, jäävät kokonaan muodostumatta naarailla, joilta puuttuu Wnt4-geeni. Tulokset viittaavat siihen, että Wnt4 on tarpeen alkioaikaiseen Müllerin tiehyen muodostavien solujen liikkeellelähtöön ja ylläpitoon. Wnt4:llä on myös keskeinen rooli kohturauhasten muodostumisessa sukukypsyyden saavuttamisen aikana ja sen jälkeen.
145

From cells to tissues

Merkel, Matthias 21 November 2014 (has links)
An essential prerequisite for the existence of multi-cellular life is the organization of cells into tissues. In this thesis, we theoretically study how large-scale tissue properties can emerge from the collective behavior of individual cells. To this end, we focus on the properties of epithelial tissue, which is one of the major tissue types in animals. We study how rheological properties of epithelia emerge from cellular processes, and we develop a physical description for the dynamics of an epithelial cell polarity. We apply our theoretical studies to observations in the developing wing of the fruit fly, Drosophila melanogaster. In order to study epithelial mechanics, we first develop a geometrical framework that rigorously describes the deformation of two-dimensional cellular networks. Our framework decomposes large-scale deformation into cellular contributions. For instance, we show how large-scale tissue shear decomposes into contributions by cell shape changes and into contributions by different kinds of topological transitions. We apply this framework in order to quantify the time-dependent deformation of the fruit fly wing, and to decompose it into cellular contributions. We also use this framework as a basis to study large-scale rheological properties of epithelia and their dependence on cellular fluctuations. To this end, we represent epithelial tissues by a vertex model, which describes cells as elastic polygons. We extend the vertex model by introducing fluctuations on the cellular scale, and we develop a method to perform perpetual simple shear simulations. Analyzing the steady state of such simple shear simulations, we find that the rheological behavior of vertex model tissue depends on the fluctuation amplitude. For small fluctuation amplitude, it behaves like a plastic material, and for high fluctuation amplitude, it behaves like a visco-elastic fluid. In addition to analyzing mechanical properties, we study the reorientation of an epithelial cell polarity. To this end, we develop a simple hydrodynamic description for polarity reorientation. In particular, we account for polarity reorientation by tissue shear, by another polarity field, and by local polarity alignment. Furthermore, we develop methods to quantify polarity patterns based on microscopical images of the fly wing. We find that our hydrodynamic description does not only account for polarity reorientation in wild type fly wings. Moreover, it is for the first time possible to also account for the observed polarity patterns in a number of genetically altered flies.:1 Introduction 1.1 The development of multi-cellular organisms 1.2 Biology of epithelial tissues 1.3 The model system Drosophila melanogaster 1.4 Planar cell polarity 1.5 Physical description of biological tissues 1.6 Overview over this thesis 2 Tissue shear in cellular networks 2.1 Geometry of tissue deformation on the cellular scale 2.2 Decomposition of the large-scale flow field into cellular contributions 2.3 Cellular contributions to the flow field in the fruit fly wing 2.4 Discussion 3 Rheological behavior of vertex model tissue under external shear 3.1 A vertex model to describe epithelial mechanics 3.2 Fluctuation-induced fluidization of tissue 3.3 Discussion 4 Quantitative study of polarity reorientation in the fruit fly wing 4.1 Experimentally quantified polarity patterns 4.2 Effective hydrodynamic theory for polarity reorientation 4.3 Comparison of theory and experiment 4.4 Discussion 5 Conclusions and outlook Appendices: A Algebra of real 2 × 2 matrices B Deformation of triangle networks C Simple shear simulations using the vertex model D Coarse-graining of a cellular Core PCP model E Quantification of polarity patterns in the fruit fly wing F Theory for polarity reorientation in the fruit fly wing G Boundary conditions for the polarity field in the fruit fly wing Table of symbols Bibliography / Eine wesentliche Voraussetzung für die Existenz mehrzelligen Lebens ist, dass sich einzelne Zellen sinnvoll zu Geweben ergänzen können. In dieser Dissertation untersuchen wir, wie großskalige Eigenschaften von Geweben aus dem kollektiven Verhalten einzelner Zellen hervorgehen. Dazu konzentrieren wir uns auf Epitheliengewebe, welches eine der Grundgewebearten in Tieren darstellt. Wir stellen theoretische Untersuchungen zu rheologischen Eigenschaften und zu zellulärer Polarität von Epithelien an. Diese theoretischen Untersuchungen vergleichen wir mit experimentellen Beobachtungen am sich entwickelnden Flügel der schwarzbäuchigen Taufliege (Drosophila melanogaster). Um die Mechanik von Epithelien zu untersuchen, entwickeln wir zunächst eine geometrische Beschreibung für die Verformung von zweidimensionalen zellulären Netzwerken. Unsere Beschreibung zerlegt die mittlere Verformung des gesamten Netzwerks in zelluläre Beitrage. Zum Beispiel wird eine Scherverformung des gesamten Netzwerks auf der zellulären Ebene exakt repräsentiert: einerseits durch die Verformung einzelner Zellen und andererseits durch topologische Veränderungen des zellulären Netzwerks. Mit Hilfe dieser Beschreibung quantifizieren wir die Verformung des Fliegenflügels während des Puppenstadiums. Des Weiteren führen wir die Verformung des Flügels auf ihre zellulären Beiträge zurück. Wir nutzen diese Beschreibung auch als Ausgangspunkt, um effektive rheologische Eigenschaften von Epithelien in Abhängigkeit von zellulären Fluktuationen zu untersuchen. Dazu simulieren wir Epithelgewebe mittels eines Vertex Modells, welches einzelne Zellen als elastische Polygone abstrahiert. Wir erweitern dieses Vertex Modell um zelluläre Fluktuationen und um die Möglichkeit, Schersimulationen beliebiger Dauer durchzuführen. Die Analyse des stationären Zustands dieser Simulationen ergibt plastisches Verhalten bei kleiner Fluktuationsamplitude und visko-elastisches Verhalten bei großer Fluktuationsamplitude. Neben mechanischen Eigenschaften untersuchen wir auch die Umorientierung einer Zellpolarität in Epithelien. Dazu entwickeln wir eine einfache hydrodynamische Beschreibung für die Umorientierung eines Polaritätsfeldes. Wir berücksichtigen dabei insbesondere Effekte durch Scherung, durch ein anderes Polaritätsfeld und durch einen lokalen Gleichrichtungseffekt. Um unsere theoretische Beschreibung mit experimentellen Daten zu vergleichen, entwickeln wir Methoden um Polaritätsmuster im Fliegenflügel zu quantifizieren. Schließlich stellen wir fest, dass unsere hydrodynamische Beschreibung in der Tat beobachtete Polaritätsmuster reproduziert. Das gilt nicht nur im Wildtypen, sondern auch in genetisch veränderten Tieren.:1 Introduction 1.1 The development of multi-cellular organisms 1.2 Biology of epithelial tissues 1.3 The model system Drosophila melanogaster 1.4 Planar cell polarity 1.5 Physical description of biological tissues 1.6 Overview over this thesis 2 Tissue shear in cellular networks 2.1 Geometry of tissue deformation on the cellular scale 2.2 Decomposition of the large-scale flow field into cellular contributions 2.3 Cellular contributions to the flow field in the fruit fly wing 2.4 Discussion 3 Rheological behavior of vertex model tissue under external shear 3.1 A vertex model to describe epithelial mechanics 3.2 Fluctuation-induced fluidization of tissue 3.3 Discussion 4 Quantitative study of polarity reorientation in the fruit fly wing 4.1 Experimentally quantified polarity patterns 4.2 Effective hydrodynamic theory for polarity reorientation 4.3 Comparison of theory and experiment 4.4 Discussion 5 Conclusions and outlook Appendices: A Algebra of real 2 × 2 matrices B Deformation of triangle networks C Simple shear simulations using the vertex model D Coarse-graining of a cellular Core PCP model E Quantification of polarity patterns in the fruit fly wing F Theory for polarity reorientation in the fruit fly wing G Boundary conditions for the polarity field in the fruit fly wing Table of symbols Bibliography
146

Polarity and Endocytic Traffic in the Mammalian Cell

Bugyei, Francis Kyei 02 July 2014 (has links)
No description available.
147

L'effet d'une prédisposition génétique aux maladies inflammatoires de l'intestin sur la barrière épithéliale intestinale

Hébert-Milette, Isabelle 05 1900 (has links)
Les maladies inflammatoires de l’intestin (MICIs) incluent la maladie de Crohn et la colite ulcéreuse et affectent plus de 270 000 personnes au Canada. L’origine des MICIs est associée à des facteurs génétiques, des facteurs environnementaux et à une perturbation du microbiome intestinal. Plus de 200 régions génomiques ont précédemment été associées aux MICIs. Des études subséquentes ont permis d’identifier le gène causal de plusieurs de ces régions et les voies de signalisation cellulaires associées telles que l’autophagie, la réponse aux molécules bactériennes et la production de cytokines. Toutefois, dans la plupart des cas, les gènes causaux des régions génomiques ne sont pas identifiés. L’identification de ces gènes et des voies cellulaires qu’ils régulent permettrait d’identifier de nouvelles cibles pharmaceutiques qui renforceraient l’éventail de traitements disponibles contre les MICIs et augmenteraient la proportion de patients qui répondent aux traitements. Mon projet de doctorat se divise en deux parties, dans un premier temps, j’ai étudié le rôle de C1ORF106 et de son variant codant rare Y333F, tous deux associés aux MICIs, dans l’épithélium intestinal. Pour ce faire, nous avons utilisé un modèle Knock-Down de C1ORF106 dans des cellules Caco-2, dans lequel nous avons diminué l’expression de C1ORF106 de 88%. Lorsque différenciées, les cellules Caco-2 forment une monocouche épithéliale étanche idéale pour l’étude de fonctions cellulaires épithéliales. Ce modèle nous a permis d’identifier les voies cellulaires régulées par C1ORF106 telles que la formation des jonctions serrées, la régulation du cytosquelette d’actine et l’établissement de la polarité cellulaire. Nous avons ensuite utilisé un modèle de cellules épithéliales dérivées de cellules souches pluripotentes induites (CSPi) provenant de patients hétérozygotes pour le variant Y333F et d’individus sains porteurs de l’allèle Y333 pour identifier l’effet du variant Y333F sur ces fonctions cellulaires. La deuxième partie de mon projet visait à déterminer quels gènes associés aux MICIs devraient être priorisés pour l’identification de nouveaux gènes causaux, et plus spécifiquement, de nouveaux gènes causaux régulant la barrière épithéliale. Pour ce faire, nous avons déterminé une liste de gènes candidats basée sur les régions génomiques précédemment associées aux MICIs, puis nous avons établi un classement basé sur la présence d’un variant génétique associé aux MICIs, sur la proximité du gène au SNP utilisé dans le GWAS et sur la connaissance de fonctions cellulaires précédemment associée aux MICIs. Nous avons ensuite établi un classement épithélial basé sur le profil d’expression cellulaire et sur l’effet que le SNP du GWAS a sur l’expression des gènes inclus dans l’étude (eQTL). Parmi les gènes les mieux classés dans ces deux classements, plusieurs gènes (IRF8, IRF6, GSDMB) sont connus pour réguler, dans d’autres types cellulaires, l’inflammasome, une voie activée par différentes molécules microbiennes. Nous avons démontré qu’IRF8 est également impliqué dans la régulation de l’inflammasome dans les cellules épithéliales intestinales. Globalement, ce projet aura identifié de nouvelles fonctions cellulaires épithéliales associées aux MICIs telles que la régulation de la polarité cellulaire et de l’inflammasome épithélial en plus d’identifier de nombreux gènes à prioriser lors de futures études génétiques. / Inflammatory bowel disease (IBD) includes Crohn disease and ulcerative colitis and affects over 270 000 people in Canada. The origin of IBD is associated with genetic factors, environmental factors and with the perturbation of the intestinal microbiota. Over 200 genomic regions have previously been associated with IBD. Subsequent studies successfully identified the causal gene of some of these regions and the associated cellular mechanisms like autophagy, response to microorganism and cytokine production. However, in most cases, the causal gene of the region have not been identified. The identification of these genes and of the cellular mechanism they are regulating would facilitate the identification of new therapeutic targets to treat IBD and increase the proportion of patients that respond to IBD treatment. My doctoral project is separated in two parts. In the first part, I studied the function of C1ORF106 and its Y333F variant, both associated with IBD, on the intestinal epithelium. We used a C1ORF106 Knock-Down model in Caco-2 cells, in which we decreased C1orf106 expression by 88%. When differentiated, Caco-2 cells form a tight epithelial monolayer ideal for the study of the epithelial barrier. Using this model, we identified the molecular pathways regulated by C1ORF106, including the regulation of junction formation, of the actin cytoskeleton and of cell polarity establishment. We then used epithelial cells derived from human induced pluripotent stem cells (hiPSC) from heterozygous patient for the Y333F variant and from healthy controls carrying the Y333 allele to study the impact of the Y333F variant on these pathways. The second part of my project aimed at identifying which genes located in the genomic region associated with IBD should be prioritized for future causal gene studies, and more specifically, on studies of genes regulating the epithelial barrier. Based on the genomic regions associated with IBD, we determined a list of candidate genes. We then ranked them based on the presence of an IBD-associated variant, on the proximity of the gene from the GWAS SNP, and on the knowledge of an IBD-associated function. We next realized an epithelial ranking based on the expression profiles of these genes and on the impact that the GWAS SNP has on each gene in the region (eQTL). Multiple genes (IRF8, IRF6, GSDMB) that were highly ranked in both of these rankings were associated with the regulation, in other cell types, of the inflammasome pathway, which is activated in response to microbial products. We demonstrated that IRF8 was also implicated in the regulation of the inflammasome in intestinal epithelial cells. Globally, this project identified multiple epithelial pathways associated with IBD like the regulation of cell polarity establishment and of the epithelial inflammasome. Moreover, we identified multiple genes that could be prioritized in future genetic studies.
148

Role of the Protein Tyrosine Kinase 7 gene in human neural tube defects

Wang, Mingqin 06 1900 (has links)
Les anomalies du tube neural (ATN) sont des anomalies développementales où le tube neural reste ouvert (1-2/1000 naissances). Afin de prévenir cette maladie, une connaissance accrue des processus moléculaires est nécessaire. L’étiologie des ATN est complexe et implique des facteurs génétiques et environnementaux. La supplémentation en acide folique est reconnue pour diminuer les risques de développer une ATN de 50-70% et cette diminution varie en fonction du début de la supplémentation et de l’origine démographique. Les gènes impliqués dans les ATN sont largement inconnus. Les études génétiques sur les ATN chez l’humain se sont concentrées sur les gènes de la voie métabolique des folates du à leur rôle protecteur dans les ATN et les gènes candidats inférés des souris modèles. Ces derniers ont montré une forte association entre la voie non-canonique Wnt/polarité cellulaire planaire (PCP) et les ATN. Le gène Protein Tyrosine Kinase 7 est un membre de cette voie qui cause l’ATN sévère de la craniorachischisis chez les souris mutantes. Ptk7 interagit génétiquement avec Vangl2 (un autre gène de la voie PCP), où les doubles hétérozygotes montrent une spina bifida. Ces données font de PTK7 comme un excellent candidat pour les ATN chez l’humain. Nous avons re-séquencé la région codante et les jonctions intron-exon de ce gène dans une cohorte de 473 patients atteints de plusieurs types d’ATN. Nous avons identifié 6 mutations rares (fréquence allélique <1%) faux-sens présentes chez 1.1% de notre cohorte, dont 3 sont absentes dans les bases de données publiques. Une variante, p.Gly348Ser, a agi comme un allèle hypermorphique lorsqu'elle est surexprimée dans le modèle de poisson zèbre. Nos résultats impliquent la mutation de PTK7 comme un facteur de risque pour les ATN et supporte l'idée d'un rôle pathogène de la signalisation PCP dans ces malformations. / Neural tube defects (NTDs) are among the most common congenital defects with a high incidence of 1-2 per 1000 births, causing a heavy burden to both the families and society. Various types of NTDs result from defects happening in the neurulation process during vertebrate embryonic development. In order to prevent the occurrence of NTDs, understanding the underlying mechanism is a prerequisite. The etiology of NTDs is complex involving environmental and genetic factors. Folic acid supplementation was proven to efficiently decrease the frequency of NTDs by 50-70% depending on the time point of this supplementation and demographic background. Gene identification studies in NTDs have adopted mainly a candidate gene approach investigating folate-related genes and genes derived from animal models. In particular, studies in mouse models have demonstrated a strong association between the non canonical Wnt/Planar Cell Polarity (PCP) pathway and NTDs. Protein Tyrosine Kinase 7 (PTK7) is a member of the PCP pathway and was shown to cause a very severe form of NTDs called craniorachischisis in a mouse model. Ptk7 genetically interacts with a core PCP member Vangl2 where double heterozygotes suffer from spina bifida. These data make PTK7 a strong candidate for NTDs in humans. We sequenced the coding region and the exon-intron junctions of PTK7 in a cohort of 473 patients affected with various forms of open and closed NTDs. Novel and rare variants (<1%) were genotyped in a cohort of 473 individuals. Their pathogenic effect was predicted in silico and functionally in an overexpression assay in a well established zebrafish model. We identified in our cohort 6 novel rare mutations, 3 of which are absent in all public databases, in 1.1% of our NTD cohort. One variant, p.Gly348Ser, acted as a hypermorph when overexpressed in the zebrafish model. Our findings implicate mutation of PTK7 as a risk factor for NTDs and provide additional evidence for a pathogenic role of PCP signaling in these malformations.
149

Hexagonal packing of Drosophila wing epithelial cells by the Planar Cell Polarity pathway

Classen, Anne-Kathrin 31 August 2006 (has links) (PDF)
The mechanisms that order cellular packing geometry are critical for the functioning of many tissues, but are poorly understood. Here we investigate this problem in the developing wing of Drosophila. The surface of the wing is decorated by hexagonally packed hairs that are uniformly oriented towards the distal wing tip. They are constructed by a hexagonal array of wing epithelial cells. We find that wing epithelial cells are irregularly arranged throughout most of development but become hexagonally packed shortly before hair formation. During the process, individual cell junctions grow and shrink, resulting in local neighbor exchanges. These dynamic changes mediate hexagonal packing and require the efficient delivery of E-cadherin to remodeling junctions; a process that depends on both the large GTPase Dynamin and the function of Rab11 recycling endosomes. We suggest that E-cadherin is actively internalized and recycled as wing epithelial cells pack into a regular hexagonal array. Hexagonal packing furthermore depends on the activity of the Planar Cell Polarity proteins. The Planar Cell Polarity group of proteins coordinates complex and polarized cell behavior in many contexts. No common cell biological mechanism has yet been identified to explain their functions in different tissues. A genetic interaction between Dynamin and the Planar Cell Polarity mutants suggests that the planar cell polarity proteins may modulate Dynamin-dependent trafficking of E-cadherin to enable the dynamic remodeling of junctions. We furthermore show that the Planar Cell Polarity protein Flamingo can recruit the exocyst component Sec5. Sec5 vesicles also co-localizes with E-cadherin and Flamingo. Based on these observations we propose that during the hexagonal repacking of the wing epithelium these proteins polarize the trafficking of E-cadherin-containing exocyst vesicles to remodeling junctions. The work presented in this thesis shows that one of the basic cellular functions of planar cell polarity signaling may be the regulation of dynamic cell adhesion. In doing so, the planar cell polarity pathway mediates the acquisition of a regular packing geometry of Drosophila wing epithelial cells. We identify polarized exocyst-dependent membrane traffic as the first basic cellular mechanism that can explain the role of PCP proteins in different developmental systems.
150

Regulation of fungal polar tip extension through NDR kinase signalling / Regulation des polaren Spitzenwachstums in filamentösen Pilzen durch NDR-Kinase-Signalwege

März, Sabine 23 October 2009 (has links)
No description available.

Page generated in 0.3253 seconds