• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 36
  • 36
  • 18
  • 10
  • 10
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Role of Stromal Cell-Derived Factor-1 in Neoangiogenesis in Endometriosis Lesions

VIRANI, SOPHIA 22 December 2011 (has links)
Endometriosis affects 5-10% of women and is characterized by the growth of endometrial tissue outside of the uterus. Treatment for endometriosis primarily focuses on symptom relief, is short term with severe side effects and often leads to recurrence of the condition. Establishing new blood supply is a fundamental requirement for endometriosis lesions growth. This has led to the idea that antiangiogenic therapy may be a successful approach for inhibiting endometriosis. Recent evidence indicates that endothelial progenitor cells (EPCs) contribute to neoangiogenesis of endometriotic lesions. These EPCs are recruited to the lesion site by stromal cell-derived factor-1 (SDF-1). We hypothesize that SDF-1 is central to the neoangiogenesis and survival of endometriotic lesions and that administration of SDF-1 blocking antibody will inhibit lesion growth by inhibiting angiogenesis in a murine model of endometriosis. Immunohistochemistry for SDF-1 and CD34 was performed on human endometriosis and normal endometrial samples. Quantification of SDF-1 and EPCs was performed in the blood of endometriosis patients and controls using ELISA and flow cytometry, respectively. A new mouse model of endometriosis was developed using BALB/c-Rag2-/-/IL2rg-/- mice to investigate role of SDF-1 in neoangiogenesis. Either SDF-1 blocking antibody or an isotype control was administered on a weekly basis for four weeks. Weekly samples of peripheral blood from mice were analyzed for SDF-1, other cytokines of interest and EPCs. Mice were euthanized at seven weeks to observe lesion growth and blood vessel development. Our results indicate overabundance of SDF-1 and CD34+ progenitor cells in human endometriotic lesions compared to eutopic endometrium. In the mouse model, SDF-1 and circulating EPC levels decreased from pre-treatment levels after one week, and remained constant over the course of the treatment in both SDF-1 blocking antibody and isotype control groups. In the SDF-1 blocking group, reduced vascularity of lesions, identified by immunofluorescence staining for CD31, was revealed compared to isotype controls. These findings suggest that SDF-1 may be responsible for CD34+ progenitor cell recruitment to the neoangiogenic sites in endometriosis. Blocking of SDF-1 reduces neovascularization of human endometriotic lesions in a mouse model. Further studies on blocking SDF-1 in combination with other antiangiogenic agents are needed. / Thesis (Master, Anatomy & Cell Biology) -- Queen's University, 2011-12-21 19:34:43.054
22

Análise das vias de administração e biodistribuição de células derivadas do broto hepático de ratos em modelos de hepatectomia parcial / Analysis of the different administration routes and biodistribution of the stem cells from liver bud of mice in the models of partial hepatectomy

Amanda Olivotti Ferreira 08 April 2016 (has links)
A perda do parênquima hepático, induzida por tratamento agudo, cirúrgico ou químico, desencadeia um processo regenerativo até que a massa hepática seja completamente restaurada. A regeneração hepática, após a hepatectomia parcial de 70%, é um dos modelos mais adequados de regeneração de células, órgãos e tecidos mais estudados. No fígado, ainda que sejam atribuídas propriedades regenerativas, muitas das lesões são tão prejudiciais que este mecanismo de reparação é insuficiente, tornando o transplante a única opção. As células derivadas do broto hepático de ratos apresentam uma boa alternativa para tratamento de doenças hepáticas devido ao seu alto índice proliferativo e da expressão de marcadores de pluripotência, sendo sua aplicabilidade viável em modelos experimentais. O objetivo deste trabalho foi analisar as diferentes vias de administração das células derivadas do broto hepático de ratos com 12,5 dias de gestação visando a melhor regeneração do órgão. Foram realizados experimentos de hepatectomia parcial de 70% (N=50 animais), PET Scan MSFX PRO In-Vivo RX e fluorescência, índice hepatossomático, análise de marcadores solúveis (GH, AFP, CEA, IGF-1), análises hematológicas, microscopia de luz (coloração HE, Tricômio de Masson), análise de marcadores por citometria de fluxo (CD90, STRO-1, Nanog, Oct3/4, Ki-67, Caspase 3) e ciclo celular por citometria de fluxo. Nossos dados demonstraram que as células do broto hepático administradas na via endotraqueal apresentaram melhor equilíbrio entre proliferação e morte celular, com maior expressão dos marcadores de pluripotência, melhor organização celular e regeneração tecidual, em contraste com outras vias, incluindo endovenosa, intraperitoneal e oroenteral. Isto a torna mais segura e de maior viabilidade na regeneração celular em relação às demais vias, sendo mais eficiente nos modelos de hepatectomia parcial / The restoration of liver parenchyma after partial hepatectomy or chemical treatments represents appropriate models to study regeneration mechanisms. The most appropriate model for liver regeneration is partial hepatectomy of 70%, however, organ repair properties are insufficient, suggesting the transplantation the best alternative to treat liver diseases. Cells derived from liver buds of rats show a high proliferative index and the expression of pluripotency markers; thus their significance for regeneration purposes can be tested experimentally. We here investigated different routes to administer cells derived from rat live buds of 12.5 days of gestation to adult individuals (N=50 animals) suffering from partial hepatectomy (70%). Applied methods included PET Scan MSFX PRO In-Vivo RX, fluorescence hepatossomatic index, analysis of soluble markers (GH, AFP, CEA, IGF-1), hematological analysis, light microscopy (staining HE, and Masson trichrome) as well as flow cytometry for cell cycle analysis and CD90, STRO-1, Nanog, OCT3/4, Ki-67, Caspase 3 expression. Our data showed that administration via the tracheal route resulted as favorite in regard to the balance between proliferation and cell deaths, of pluripotency marker expression, cellular organization and tissue regeneration, in contrast to other routes including: intravenous, intraperitoneal and oroenteral. Consequently, the tracheal route showed safer and more efficient treatment to enhance cell regeneration after partial hepatectomy
23

Evaluation of neurochemical and functional effects of glial cell-derived neurotrophic factor gene delivery using a tetracycline-regulatable adeno-associated viral vector

Yang, Xin 24 June 2011 (has links)
Gene transfer to the brain is a promising therapeutic strategy for a variety of neurodegenerative disorders including Parkinson‟s disease (PD). PD is the second most common neurodegenerative disease. Although many drugs have been developed and introduced into the market to provide symptomatic treatment, there is still no cure for PD. Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for injured nigrostriatal dopamine neurons and is currently being evaluated as a potential treatment for PD. Gene therapy allows localized, long-term and stable transgene expression after a single intervention to obtain a therapeutic effect. Regulatable promoters for transgene expression furthermore allow optimizing GDNF concentration to avoid undesirable biological activity and clinical side effects. In the first part of the study, an autoregulatory tetracycline-inducible recombinant adeno-associated viral vector (rAAV-pTetbidiON) utilizing the rtTAM2 reverse tetracycline transactivator (rAAV-rtTAM2) was used to conditionally express the human GDNF cDNA. Eight weeks after a single intrastriatal injection of the rAAV-rtTAM2-GDNF vector encapsidated into AAV serotype 1 capsids (rAAV2/1), the GDNF protein level was respectively 15 fold higherand undistinguishable from the endogenous level in doxycycline(Dox) treated and untreated animals. However, a residual GDNF expression in the uninduced animals was evidenced by a sensitive immunohistochemical staining. As compared to rAAV2/1-rtTAM2-GDNF, the rAAV2/1-rtTAM2-WPRE-GDNF vector harboring a woodchuck hepatitis post-transcriptional regulatory element, which increases and stabilizes the transgene transcript, expressed a similar concentration of GDNF in the induced state but a basal level ~2.5-fold higher than the endogenous striatal level. However, the distribution of GDNF in the striatum in induced state was more widespread using the rAAV2/1-rtTAM2-WPRE-GDNF vector as compared to rAAV2/1-rtTAM2- GDNF. As a proof for biological activity, for both vectors, downregulation of tyrosine hydroxylase (TH) was evidenced in dopaminergic terminals of Dox-treated but not untreated animals. In the second part of my study, functional (behavioural) and neurochemical changes mediated by delayed intrastriatal GDNF gene delivery in the partial Parkinson‟s disease rat model were investigated. The rAAV2/1-rtTAM2-WPRE-GDNF vector (3.5 108 viral genomes) was administered unilaterally in the rat striatum 5 weeks after intrastriatal injection of 6-hydroxydopamine (6-OHDA) which produces a partial and progressive lesion of the nigro-striatal dopaminergic pathway. Rats were treated with Dox or untreated from the day of vector injection until sacrifice at 4 or 14 weeks (continuous treatment). A sub-group was Dox-treated for 7 weeks (temporary treatment) then untreated until 14 weeks. In the absence of Dox, the GDNF tissue concentration was found to be equivalent to the endogenous level in 6-OHDA-lesioned rats. In the presence of Dox, it was ~10-fold higher. Dox-dependent behavioral improvements were demonstrated 4 weeks post-vector injection. At later time points, spontaneous partial recovery was observed in all rats, but no further improvement was found in Dox-treated animals. Moreover GDNF gene delivery only transiently improved dopaminergic function. Over the long term, TH was more abundant, but not functional, and the increase was lost when GDNF gene expression was switched off. The third part of my study consisted in the evaluation of the respective dose-range of therapeutical and undesirable effects of GDNF. Functional effects appeared after delivery of 3.5 108 viral particles which produced 200-300 pg/mg protein of GDNF in the lesioned rat striatum (see above). In order to evaluate the viral dose producing undesirable effects, we compared two different doses of vector: 3.5x108 and 4.4x109 viral genome. In the low dose group, the GDNF concentration in the striatum was ~300 pg/mg protein in the Dox-treated animals and equivalent to the endogenous level in untreated animals (~20 pg/mg protein). In contrast, in the high dose group, GDNF levels reached ~1200 pg/mg protein in induced animals but up to ~300 pg/mg protein in uniduced animals. In the low dose group, Dox-dependent downregulation of TH but no asymetrical behaviour was evidenced. In the high dose group, TH downregulation was observed in both Dox+ and Dox-rats. In addition, amphetamine-induced rotational behaviour was evidenced in Dox+ but not in Dox-rats. These data suggest that low doses of virus are sufficient to induce therapeutically-relevant but not undesirable functional effects of GDNF. Nevertheless,a neurochemical effect of GDNF (TH down-regulation) did appear at low dose. In order to understand the GDNF-induced motor asymmetry, we investigated the anatomical pattern of TH down regulation in striatum. Strikingly, there was a greater loss of TH labeling in striosomes than in the surrounding matrix. Receptors which are known to be differentially expressed in the striosomes i.e. µ-opioid receptor(MOR-1) and N-methyl-D-aspartic acid (NMDA) receptor 1 (NR1) as compared to the matrix were analyzed in the high-dose group of animals. MOR-1 was not affected by GDNF gene delivery. In contrast, NR1 was down regulated. The potential relationship between TH and NR1 down-regulation as well as other previously described neurochemical effects of GDNF (as enhancement of DA release and metabolism, of DA neurons excitability or of TH phosphorylation) and behavioural asymmetry remains to be clarified. As summary, our data suggest that behavioural and neurochemical effects of striatal delivery of GDNF can be controlled by Dox by using the autoregulatory rAAV2/1-TetON- GDNF vector, provided the dose range of gene delivery is carefully adjusted. / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
24

Cryopreservation of Induced Pluripotent Stem Cell Derived Neurons and Primary T-Cells and Natural Killer Cells Using Ice Recrystallization Inhibitor Technology

Alasmar, Salma 14 November 2022 (has links)
Given the rising demand for diverse cell types in regenerative and transfusion medicines, such as human induced pluripotent stem cell-derived neurons (iPSC-Ns), human T/chimeric antigen receptor (CAR) T cells, and human natural killer (NK) cells, the ability to cryopreserve cells has become increasingly important. In regenerative medicine, iPSC-Ns are powerful tools for treating and modelling neurodegenerative diseases. Moreover, transplants/transfusions of T/CAR T cells or NK cells offer promising treatment for numerous types of tumors, such as leukemia and multiple myeloma. Cryopreservation of cells at sub-zero temperatures (-80 to -196 °C) allows for the development of master cell banks that can be used for clinical applications. Conventional cryoprotective agents (CPAs), such as dimethylsulfoxide (DMSO) and glycerol, are utilized to protect cells from cryoinjuries associated with the freezing process. However, the use of high concentrations of DMSO (i.e., 10 to 20%) has been shown to be accompanied with toxic effects on patients receiving cell therapies if it is not removed or diluted prior to transfusion. Moreover, DMSO does not prevent the occurrence of the cryoinjury associated with ice recrystallization, which is one of the major causes of cell death/damage during cryopreservation. As a result, there is a surge of attention toward developing new non-toxic cryo-additives that inhibit ice recrystallization during cryopreservation to permit future advancement in regenerative and transfusion medicines. Moreover, the use of ice recrystallization inhibitors (IRIs) as novel CPAs has become a promising strategy to improve cell viability and function post-thaw. The Ben laboratory heavily invested in synthesizing several classes of carbohydrate-based small molecule IRIs (i.e., O-linked alkyl and aryl glycosides, and N-aryl-D-gluconamides), and studying the correlation between their IRI activity and molecular properties, such as polar surface area to molecular surface area (PSA/MSA) ratio. Moreover, compounds that belong to the O-linked aryl glycosides and N-aryl-D-gluconamides classes of IRIs have been shown to enhance the viability and functionality of red blood cells (RBCs), hematopoietic stem cells (HSCs), and induced pluripotent stem cells (iPSCs) after thawing. Part of the research presented throughout this thesis focuses on structure-activity relationship (SAR) studies of alkyl pyranoses with modified alkyl chain lengths to explore any correlations between the IRI activity and the net polarity (i.e., PSA/MSA ratio) of the IRI candidates. O- and C-linked alkyl pyranose derivatives with different alkyl chain lengths were synthesized and their IRI activity was assessed using the modified splat cooling assay. While the IRI activity of the O- and C-linked alkyl glucosides did differ as the length of the alkyl chain increased, no correlation between the PSA/MSA ratios and their IRI activity was observed. In addition, this work allowed for investigation into the effect of the type of the glycosidic bond (i.e., C-O and C-C bonds) at the anomeric position, on the IRI activity of the different compounds. The O-linked alkyl glucosides appeared to be more IRI active than the C-linked compounds, suggesting the nature of the glycosidic bond is important for IRI activity. The second part of the research presented in this thesis focuses on examining the potential for IRIs to cryopreserve iPSC-Ns, T/CAR T cells, and NK cells. 2-fluorophenyl-D-gluconamides (2FA), which is one of the most active IRIs from the N-aryl-Dgluconamides, has shown promising results in maintaining a high number of viable and functional HSCs and iPSCs post-thaw, and therefore it was employed in the cryopreservation protocol of iPSC-Ns, human-derived T/CAR T cells, and human-derived NK cells. The efficacy of the cryopreservation protocol being constructed was evaluated by assessing the post-thaw viability and recovery rate, as well as the functionality of iPSCNs, T/CAR T cells, and NK cells post-thaw. These studies showed that protecting against ice recrystallization during cryopreservation with IRIs increases the number of viable and functional iPSC-Ns, and T/CAR T cells. It was also observed that employing IRI technology in the cryopreservation protocol of NK cells does not compromise their functionality compared to fresh, non-frozen NK cells. Overall, inhibition of ice recrystallization using IRIs appeared to enhance the cryopreservation outcomes of the different cell types, which will allow for the development of off-the-shelf cell therapy products and improvement of the delivery of efficacious cell products to clinics and hospitals.
25

CYTOKINE MODULATION OF PROGENITOR CELL MIGRATION

Punia, Navneet 10 1900 (has links)
<p><strong>Rationale: </strong>Lung-homing of bone marrow (BM)-derived progenitor cells is associated with inflammatory and remodeling changes in asthma. Stromal cell derived factor-1α (SDF-1α) is a potent progenitor cell chemoattractant and its local production in the lung promotes lung homing of progenitor cells. The role of pro-inflammatory cytokines in promoting traffic of progenitor cells to the site of inflammation in asthma has not been investigated. The TH2 cytokines, interleukin (IL)-4 and IL-13, are key regulators of asthma pathology.</p> <p><strong>Objective: </strong>To investigate the role of IL-4 and IL-13 in modulating the trans-migrational responses of hemopoietic progenitor cells (HPC).</p> <p><strong>Methods: </strong>HPC were isolated from cord blood (CB) and peripheral blood (PB) and migrational and adhesive responses were assessed using transwell migration assays and adhesion to fibronectin-coated wells, respectively. Responding cells were enumerated by flow cytometry.</p> <p><strong>Results: </strong>IL-4 and IL-13 had no direct effect on progenitor cell migration. Pre-incubation with each of these cytokines primed SDF-1α stimulated migration of CB and PB-derived HPC (CD34+45+ cells) but not eosinophil-lineage committed progenitors (CD34+45+IL- 5Rα+ cells) or mature eosinophils to SDF-1α. For HPC, priming effects of IL-4 (0.1ng/ml) and IL-13 (0.1ng/ml) were detectable within 1hr and optimal at 18hr post- incubation and IL-4 was the more effective priming agent. Disruption of lipid rafts inhibited IL-4 priming of SDF-1α stimulated migration of HPC indicating that increased incorporation of CXCR4 into membrane lipid rafts mediates the cytokine primed migrational response of HPC. This was confirmed by confocal fluorescent microscopy.</p> <p><strong>Conclusions: </strong>IL-4 and IL-13 prime the migrational response of HPC to SDF-1α by enhancing the incorporation of CXCR4 into lipid rafts. The priming effect of these cytokines is specific to primitive HPC. These data suggest that increased local production of IL-4 and IL-13 within the lungs may promote increased SDF-1α mediated homing of BM-derived HPC to the airways in asthma.</p> / Master of Science in Medical Sciences (MSMS)
26

Molekuly "DASH systému" v lokálních a systémových patogenetických procesech revmatoidní artritidy / "DASH molecues" in local and systemic pathogenetic processes of rehumatoid arthritis

Šromová, Lucie January 2015 (has links)
The biological half-life of several pro-inflammatory mediators involved in the pathogenesis of rheumatoid arthritis (RA) is controlled by molecules exhibiting dipeptidyl peptidase-IV (DPP-IV)-like enzymatic activity (Dipeptidyl peptidase-IV activity and/or structure homologues- DASH). The aim of this thesis was to identify the molecular source of the DPP-IV-like enzymatic activity in the peripheral blood and synovial fluid in patients with rheumatoid arthritis as compared to control patients with osteoarthritis (OA), and to evaluate the association of DPP-IV with the disease activity. We found that the main source of the DPP-IV-like enzyme activity in the plasma and in the synovial fluid in patients with RA is the canonical DPP-IV. DPP-IV-like enzymatic activity and canonical DPP-IV were also detected on the cell surface of blood and synovial fluid mononuclear cells. Significantly lower DPP-IV-like enzymatic activity and DPP-IV expression in the synovial fluid mononuclear cells was found in RA as opposed to OA patients. In the synovial fluid of RA patients there was also a negative correlation between the concentration of the pro-inflammatory DPP-IV substrate SDF (stromal cell-derived factor-1 and the proportion of the DPP-IV+ T cells. The blood plasma DPP-IV-like enzymatic activity and...
27

Molekuly "DASH systému" v lokálních a systémových patogenetických procesech revmatoidní artritidy / "DASH molecues" in local and systemic pathogenetic processes of rehumatoid arthritis

Šromová, Lucie January 2015 (has links)
The biological half-life of several pro-inflammatory mediators involved in the pathogenesis of rheumatoid arthritis (RA) is controlled by molecules exhibiting dipeptidyl peptidase-IV (DPP-IV)-like enzymatic activity (Dipeptidyl peptidase-IV activity and/or structure homologues- DASH). The aim of this thesis was to identify the molecular source of the DPP-IV-like enzymatic activity in the peripheral blood and synovial fluid in patients with rheumatoid arthritis as compared to control patients with osteoarthritis (OA), and to evaluate the association of DPP-IV with the disease activity. We found that the main source of the DPP-IV-like enzyme activity in the plasma and in the synovial fluid in patients with RA is the canonical DPP-IV. DPP-IV-like enzymatic activity and canonical DPP-IV were also detected on the cell surface of blood and synovial fluid mononuclear cells. Significantly lower DPP-IV-like enzymatic activity and DPP-IV expression in the synovial fluid mononuclear cells was found in RA as opposed to OA patients. In the synovial fluid of RA patients there was also a negative correlation between the concentration of the pro-inflammatory DPP-IV substrate SDF (stromal cell-derived factor-1 and the proportion of the DPP-IV+ T cells. The blood plasma DPP-IV-like enzymatic activity and...
28

Uticaj farmaceutsko-tehnološke formulacije u obliku mikrovezikula sa alginatom na resorpciju gliklazida iz digestivnog trakta pacova / The effect of alginate microcapsules pharmaceutical formulation on gliclazide absorption in rat gastrointestinal tract

Ćalasan Jelena 24 April 2019 (has links)
<p>Gliklazid je jedan od najče&scaron;će kori&scaron;ćenih lekova u terapiji dijabetes melitusa tip 2. U poslednje vreme, utvrđeno je da gliklazid ispoljava i druge pozitivne farmakolo&scaron;ke efekte kao &scaron;to su imunomodulatorni i anti-koagulacioni efekti, ukazujući na njegovu potencijalnu primenu u terapiji dijabetes melitusa tip 1. Gliklazid se odlikuje varijabilnim stepenom apsorpcije nakon peroralne primene i iz tog razloga pretpostavlja se da bi tehnike njegove ciljane isporuke, kao &scaron;to je mikroinkapsulacija, mogle da dovedu do pobolj&scaron;anja njegove apsorpcije i njegove potencijalne primene u terapiji T1DM. Pokazano je da različite žučne kiseline, uključujući i holnu, imaju stabilizacione efekte u domenu primene mikrovezikula i kontrolisanog osobađanja lekova, te je moguće da bi njihov dodatak u mikrovezikularnu formulaciju gliklazida mogao dodatno da pobolj&scaron;a oslobađanje gliklazida, njegovu apsorpciju i antidijabetičke efekte. S tim u vezi, cilj ovog istraživanja je da se ispita hipoglikemijski efekat gliklazida primenjenog u obliku alginatnih mikrovezikula, sa ili bez dodatka holne kiseline na T1DM modelu pacova. Trideset &scaron;est pacova obolelih od T1DM indukovanog aloksanom i odgovarajuće zdrave kontrolne životinje su nasumično raspoređene u &scaron;est grupa (n=6) i tretirane jednokratnom dozom fiziolo&scaron;kog rastvora, suspenzijom gliklazida, gliklazidom u obliku alginatnih mikrovezikula, samo holnom kiselinom, i mikrovezikulama gliklazida sa ili baz dodatka holne kiseline. Uzorkovana je krv tokom 10 h nakon unete doze i merena je koncentracija glukoze u krvi I koncentracija gliklazida u serumu kori&scaron;ćenjem HPLC metode. Mikrovezikule gliklazida su ispoljile hipo-glikemijski efekat kod pacova obolelih od dijabetesa, uprkos njegovim smanjenim koncentracijama u serumu, dok je dodatak holne kiseline u mikrovezikularnu formulaciju smanjio hipoglikemijski efekat gliklazida. Ovo potvrđuje izostanak sinergističkog efekta između gliklazida i holne kiseline. Takođe, ni proces mikroinkapsulacije niti dodatak holne kiseline nisu doprineli pobolj&scaron;anju apsorpcije gliklazida, &scaron;to ukazuje na činjenicu da su njegovi hipoglikemijski efekti nezavisni od njegove apsorpcije i koncentracije u serumu. Stoga se može pretpostaviti da su hipoglikemijski efekti gliklazida pre pod uticajem crevno-metaboličke aktivacije nego ciljanog oslobađanja u digestivnom traktu sistemske apsorpcije. Mikrovezikule gliklazida ispoljavaju hipoglikemijski efekat kod pacova obolelih od T1DM nezavisno od insulina, te mogu imati potencijalnu primenu u terapiji T1DM. Ovaj rad su podržali: HORIZON 2020 MEDLEM projekat broj 690876; Projekat Sekretarijata naučnog i tehnolo&scaron;kog razvoja Vojvodine broj . 114-451-2072-/2016-02; Projekat Ministarstva obrazovanja, nauke i tehnolo&scaron;kog razvoja Republike Srbije broja 41012.</p> / <p><!--[if gte mso 9]><xml> <o:DocumentProperties> <o:Author>mladen</o:Author> <o:Version>16.00</o:Version> </o:DocumentProperties> <o:OfficeDocumentSettings> <o:AllowPNG/> </o:OfficeDocumentSettings></xml><![endif]--><!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:TrackMoves/> <w:TrackFormatting/> <w:PunctuationKerning/> <w:ValidateAgainstSchemas/> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:DoNotPromoteQF/> <w:LidThemeOther>EN-US</w:LidThemeOther> <w:LidThemeAsian>X-NONE</w:LidThemeAsian> <w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript> <w:Compatibility> <w:BreakWrappedTables/> <w:SnapToGridInCell/> <w:WrapTextWithPunct/> <w:UseAsianBreakRules/> <w:DontGrowAutofit/> <w:SplitPgBreakAndParaMark/> <w:EnableOpenTypeKerning/> <w:DontFlipMirrorIndents/> <w:OverrideTableStyleHps/> </w:Compatibility> <m:mathPr> <m:mathFont m:val="Cambria Math"/> <m:brkBin m:val="before"/> <m:brkBinSub m:val="&#45;-"/> <m:smallFrac m:val="off"/> <m:dispDef/> <m:lMargin m:val="0"/> <m:rMargin m:val="0"/> <m:defJc m:val="centerGroup"/> <m:wrapIndent m:val="1440"/> <m:intLim m:val="subSup"/> <m:naryLim m:val="undOvr"/> </m:mathPr></w:WordDocument></xml><![endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="false" DefSemiHidden="false" DefQFormat="false" DefPriority="99" LatentStyleCount="371"> <w:LsdException Locked="false" Priority="0" QFormat="true" Name="Normal"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 1"/> <w:LsdException Locked="false" Priority="9" SemiHidden="true" UnhideWhenUsed="true" QFormat="true" Name="heading 2"/> <w:LsdException Locked="false" Priority="9" SemiHidden="true" UnhideWhenUsed="true" QFormat="true" Name="heading 3"/> <w:LsdException Locked="false" Priority="9" SemiHidden="true" UnhideWhenUsed="true" QFormat="true" Name="heading 4"/> <w:LsdException Locked="false" Priority="9" SemiHidden="true" UnhideWhenUsed="true" QFormat="true" Name="heading 5"/> <w:LsdException Locked="false" Priority="9" SemiHidden="true" UnhideWhenUsed="true" QFormat="true" Name="heading 6"/> <w:LsdException Locked="false" Priority="9" SemiHidden="true" UnhideWhenUsed="true" QFormat="true" Name="heading 7"/> <w:LsdException Locked="false" Priority="9" SemiHidden="true" UnhideWhenUsed="true" QFormat="true" Name="heading 8"/> <w:LsdException Locked="false" Priority="9" SemiHidden="true" UnhideWhenUsed="true" QFormat="true" Name="heading 9"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="index 1"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="index 2"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="index 3"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="index 4"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="index 5"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="index 6"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="index 7"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="index 8"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="index 9"/> <w:LsdException Locked="false" Priority="39" SemiHidden="true" UnhideWhenUsed="true" Name="toc 1"/> <w:LsdException Locked="false" Priority="39" SemiHidden="true" UnhideWhenUsed="true" Name="toc 2"/> <w:LsdException Locked="false" Priority="39" SemiHidden="true" UnhideWhenUsed="true" Name="toc 3"/> <w:LsdException Locked="false" Priority="39" SemiHidden="true" UnhideWhenUsed="true" Name="toc 4"/> <w:LsdException Locked="false" Priority="39" SemiHidden="true" UnhideWhenUsed="true" Name="toc 5"/> <w:LsdException Locked="false" Priority="39" SemiHidden="true" UnhideWhenUsed="true" Name="toc 6"/> <w:LsdException Locked="false" Priority="39" SemiHidden="true" UnhideWhenUsed="true" Name="toc 7"/> <w:LsdException Locked="false" Priority="39" SemiHidden="true" UnhideWhenUsed="true" Name="toc 8"/> <w:LsdException Locked="false" Priority="39" SemiHidden="true" UnhideWhenUsed="true" Name="toc 9"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Normal Indent"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="footnote text"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="annotation text"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="header"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="footer"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="index heading"/> <w:LsdException Locked="false" Priority="35" SemiHidden="true" UnhideWhenUsed="true" QFormat="true" Name="caption"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="table of figures"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="envelope address"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="envelope return"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="footnote reference"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="annotation reference"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="line number"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="page number"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="endnote reference"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="endnote text"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="table of authorities"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="macro"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="toa heading"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List Bullet"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List Number"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List 2"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List 3"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List 4"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List 5"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List Bullet 2"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List Bullet 3"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List Bullet 4"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List Bullet 5"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List Number 2"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List Number 3"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List Number 4"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List Number 5"/> <w:LsdException Locked="false" Priority="10" QFormat="true" Name="Title"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Closing"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Signature"/> <w:LsdException Locked="false" Priority="1" SemiHidden="true" UnhideWhenUsed="true" Name="Default Paragraph Font"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Body Text"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Body Text Indent"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List Continue"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List Continue 2"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List Continue 3"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List Continue 4"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="List Continue 5"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Message Header"/> <w:LsdException Locked="false" Priority="11" QFormat="true" Name="Subtitle"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Salutation"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Date"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Body Text First Indent"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Body Text First Indent 2"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Note Heading"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Body Text 2"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Body Text 3"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Body Text Indent 2"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Body Text Indent 3"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Block Text"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Hyperlink"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="FollowedHyperlink"/> <w:LsdException Locked="false" Priority="22" QFormat="true" Name="Strong"/> <w:LsdException Locked="false" Priority="20" QFormat="true" Name="Emphasis"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Document Map"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Plain Text"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="E-mail Signature"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="HTML Top of Form"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="HTML Bottom of Form"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Normal (Web)"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="HTML Acronym"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="HTML Address"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="HTML Cite"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="HTML Code"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="HTML Definition"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="HTML Keyboard"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="HTML Preformatted"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="HTML Sample"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="HTML Typewriter"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="HTML Variable"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Normal Table"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="annotation subject"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="No List"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Outline List 1"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Outline List 2"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Outline List 3"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Simple 1"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Simple 2"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Simple 3"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Classic 1"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Classic 2"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Classic 3"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Classic 4"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Colorful 1"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Colorful 2"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Colorful 3"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Columns 1"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Columns 2"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Columns 3"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Columns 4"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Columns 5"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Grid 1"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Grid 2"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Grid 3"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Grid 4"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Grid 5"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Grid 6"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Grid 7"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Grid 8"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table List 1"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table List 2"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table List 3"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table List 4"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table List 5"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table List 6"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table List 7"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table List 8"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table 3D effects 1"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table 3D effects 2"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table 3D effects 3"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Contemporary"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Elegant"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Professional"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Subtle 1"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Subtle 2"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Web 1"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Web 2"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Web 3"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Balloon Text"/> <w:LsdException Locked="false" Priority="39" Name="Table Grid"/> <w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" Name="Table Theme"/> <w:LsdException Locked="false" SemiHidden="true" Name="Placeholder Text"/> <w:LsdException Locked="false" Priority="1" QFormat="true" Name="No Spacing"/> <w:LsdException Locked="false" Priority="60" Name="Light Shading"/> <w:LsdException Locked="false" Priority="61" Name="Light List"/> <w:LsdException Locked="false" Priority="62" Name="Light Grid"/> <w:LsdException Locked="false" Priority="63" Name="Medium Shading 1"/> <w:LsdException Locked="false" Priority="64" Name="Medium Shading 2"/> <w:LsdException Locked="false" Priority="65" Name="Medium List 1"/> <w:LsdException Locked="false" Priority="66" Name="Medium List 2"/> <w:LsdException Locked="false" Priority="67" Name="Medium Grid 1"/> <w:LsdException Locked="false" Priority="68" Name="Medium Grid 2"/> <w:LsdException Locked="false" Priority="69" Name="Medium Grid 3"/> <w:LsdException Locked="false" Priority="70" Name="Dark List"/> <w:LsdException Locked="false" Priority="71" Name="Colorful Shading"/> <w:LsdException Locked="false" Priority="72" Name="Colorful List"/> <w:LsdException Locked="false" Priority="73" Name="Colorful Grid"/> <w:LsdException Locked="false" Priority="60" Name="Light Shading Accent 1"/> <w:LsdException Locked="false" Priority="61" Name="Light List Accent 1"/> <w:LsdException Locked="false" Priority="62" Name="Light Grid Accent 1"/> <w:LsdException Locked="false" Priority="63" Name="Medium Shading 1 Accent 1"/> <w:LsdException Locked="false" Priority="64" Name="Medium Shading 2 Accent 1"/> <w:LsdException Locked="false" Priority="65" Name="Medium List 1 Accent 1"/> <w:LsdException Locked="false" SemiHidden="true" Name="Revision"/> <w:LsdException Locked="false" Priority="34" QFormat="true" Name="List Paragraph"/> <w:LsdException Locked="false" Priority="29" QFormat="true" Name="Quote"/> <w:LsdException Locked="false" Priority="30" QFormat="true" Name="Intense Quote"/> <w:LsdException Locked="false" Priority="66" Name="Medium List 2 Accent 1"/> <w:LsdException Locked="false" Priority="67" Name="Medium Grid 1 Accent 1"/> <w:LsdException Locked="false" Priority="68" Name="Medium Grid 2 Accent 1"/> <w:LsdException Locked="false" Priority="69" Name="Medium Grid 3 Accent 1"/> <w:LsdException Locked="false" Priority="70" Name="Dark List Accent 1"/> <w:LsdException Locked="false" Priority="71" Name="Colorful Shading Accent 1"/> <w:LsdException Locked="false" Priority="72" Name="Colorful List Accent 1"/> <w:LsdException Locked="false" Priority="73" Name="Colorful Grid Accent 1"/> <w:LsdException Locked="false" Priority="60" Name="Light Shading Accent 2"/> <w:LsdException Locked="false" Priority="61" Name="Light List Accent 2"/> <w:LsdException Locked="false" Priority="62" Name="Light Grid Accent 2"/> <w:LsdException Locked="false" Priority="63" Name="Medium Shading 1 Accent 2"/> <w:LsdException Locked="false" Priority="64" Name="Medium Shading 2 Accent 2"/> <w:LsdException Locked="false" Priority="65" Name="Medium List 1 Accent 2"/> <w:LsdException Locked="false" Priority="66" Name="Medium List 2 Accent 2"/> <w:LsdException Locked="false" Priority="67" Name="Medium Grid 1 Accent 2"/> <w:LsdException Locked="false" Priority="68" Name="Medium Grid 2 Accent 2"/> <w:LsdException Locked="false" Priority="69" Name="Medium Grid 3 Accent 2"/> <w:LsdException Locked="false" Priority="70" Name="Dark List Accent 2"/> <w:LsdException Locked="false" Priority="71" Name="Colorful Shading Accent 2"/> <w:LsdException Locked="false" Priority="72" Name="Colorful List Accent 2"/> <w:LsdException Locked="false" Priority="73" Name="Colorful Grid Accent 2"/> <w:LsdException Locked="false" Priority="60" Name="Light Shading Accent 3"/> <w:LsdException Locked="false" Priority="61" Name="Light List Accent 3"/> <w:LsdException Locked="false" Priority="62" Name="Light Grid Accent 3"/> <w:LsdException Locked="false" Priority="63" Name="Medium Shading 1 Accent 3"/> <w:LsdException Locked="false" Priority="64" Name="Medium Shading 2 Accent 3"/> <w:LsdException Locked="false" Priority="65" Name="Medium List 1 Accent 3"/> <w:LsdException Locked="false" Priority="66" Name="Medium List 2 Accent 3"/> <w:LsdException Locked="false" Priority="67" Name="Medium Grid 1 Accent 3"/> <w:LsdException Locked="false" Priority="68" Name="Medium Grid 2 Accent 3"/> <w:LsdException Locked="false" Priority="69" Name="Medium Grid 3 Accent 3"/> <w:LsdException Locked="false" Priority="70" Name="Dark List Accent 3"/> <w:LsdException Locked="false" Priority="71" Name="Colorful Shading Accent 3"/> <w:LsdException Locked="false" Priority="72" Name="Colorful List Accent 3"/> <w:LsdException Locked="false" Priority="73" Name="Colorful Grid Accent 3"/> <w:LsdException Locked="false" Priority="60" Name="Light Shading Accent 4"/> <w:LsdException Locked="false" Priority="61" Name="Light List Accent 4"/> <w:LsdException Locked="false" Priority="62" Name="Light Grid Accent 4"/> <w:LsdException Locked="false" Priority="63" Name="Medium Shading 1 Accent 4"/> <w:LsdException Locked="false" Priority="64" Name="Medium Shading 2 Accent 4"/> <w:LsdException Locked="false" Priority="65" Name="Medium List 1 Accent 4"/> <w:LsdException Locked="false" Priority="66" Name="Medium List 2 Accent 4"/>
29

Charakterisierung von Stammzellen in humanen Geweben und deren Differenzierung in dendritische Zellen

Ehrenspeck, Kirsten 26 June 2013 (has links) (PDF)
Aus hämatopoetischen Stammzellen (HSCs) können sich neben allen anderen Zellen des Immunsystems auch dendritische Zellen (DCs) entwickeln. DCs spielen eine zentrale Rolle sowohl bei der Induktion von Immunantworten als auch bei der Aufrechterhaltung peripherer Toleranz. Eine Beeinflussung von DCs zur therapeutischen Nutzung wäre wünschenswert, erfordert aber ein noch tieferes Verständnis über deren Entwicklung im humanen Organismus. Das erste Ziel dieser Arbeit war die Charakterisierung potentieller DC-Vorläuferzellen in humanen lymphatischen Geweben. In Immunfluoreszenzaufnahmen von Thymus, Milz und Tonsillen mit Stammzell-charakterisierenden Markern konnten sowohl die in der Literatur als „Hämatopoetisches Stammzellkompartiment“ beschriebene Zellpopulation als auch weitere Zwischenstufen der Entwicklungsreihe der HSCs detektiert werden. Als Nächstes wurde untersucht, ob die im Gewebe identifizierten CD34+ Zellen in der in vitro Kultur zu DCs differenziert werden konnten. Hierzu wurden zunächst Protokolle etabliert und weiterentwickelt, in denen CD34+ Stammzellen des Nabelschnurbluts zu DCs gereift wurden. In einem anschließenden Schritt wurde das Protokoll mit den besten Ausbeuten an DCs auf Thymuszellen angewendet. Somit gelang es, aus Thymusstammzellen eine DCSubpopulation zu generieren, die aufgrund ihrer Markerexpression den Langerhanszellen ähnelt. Auf ihnen konnten außer Langerin auch andere C-Typ Lektinrezeptoren (Clec9a, DCIR und CD205) detektiert werden. Diese Zellen sind daher interessante Ziele für Untersuchungen zur Antigenbeladung von DCs und deren Präsentation an das adaptive Immunsystem. Zur effektiven Antigenbeladung von DCs werden Antikörper gegen endozytotisch wirksame Oberflächenmoleküle benötigt. Für deren Produktion wurden im weiteren Verlauf der Arbeit His-tragende und Ig-Fusionsproteine von Clec9a, Langerin, Dectin-1 und Dectin-2 produziert, um diese zur Immunisierung und Antikörperproduktion einzusetzen. In Zukunft können diese Antikörper zur Charakterisierung verschiedenster DC-Subpopulationen und außerdem zur Antigenbeladung von DCs herangezogen werden.
30

Einfluss des α1(I)-Kollagens auf die Aktionspotentiale von frühen aus embryonalen Stammzellen differenzierten Kardiomyozyten / Influence of α1(I)-Collagen on Action Potentials in Early Stage Cardiomyocytes Derived from Embryonic Stem Cells

Neef, Stefan 06 July 2011 (has links)
No description available.

Page generated in 0.0483 seconds