151 |
Islet insulin secretory patterns in diabetes and the role of UCP2Lin, Jian-Man January 2002 (has links)
During development of type 1 and type 2 diabetes plasma insulin patterns are altered. Since the islet insulin release pattern has been implicated in this development, insulin secretion from single islets was studied and linked to the islet protein levels of uncoupling protein-2 (UCP2). Islets were isolated from NOD- and KKAy- mice, GK- and GK-derived congenic rats, which are animal models of diabetes, and three human subjects with type 2 diabetes. At basal glucose (3 mM), insulin release from such islets was pulsatile and the amount released was comparable to that of control islets. When the glucose concentration was raised to 11 mM insulin release was essentially unchanged in islets isolated from older NOD- and KKAy- mice, GK- and Niddm1i congenic rats, and NIDDM persons. In islets from Niddm1f congenic rats, younger NOD- and KKAy-mice, control animals and normal human donors the secretion rate increased 2-9 fold when the glucose concentration was raised. This rise in secretion was manifested as increase of the amplitude of the insulin oscillations without affecting their frequency. Impaired glucose-induced insulin release was associated with reduction in glucose oxidation measured in NOD-islets, unaffected respiration measured in GK-islets and higher protein level of UCP2 measured in KKAy-islets. When the UCP2 amounts in KKAy-islets were reduced by culture to those of control islets, glucose-induced insulin secretion was essentially normalized. Our studies suggest that the deranged plasma insulin patterns observed in diabetes are related to decrease in the amplitude of insulin oscillations from the islets rather than loss of the oscillatory activity. This reduction of pulse amplitude may be related to impaired glucose metabolism and/or increased mitochondrial uncoupling.
|
152 |
Prevention of type 1 diabetes mellitus in experimental studiesHolstad, Maria January 2001 (has links)
The aim of the study was to examine the immune response and different immunoprotective strategies in experimental type 1 diabetes mellitus. The autoimmune destruction of the insulin-producing pancreatic β-cells that leads to type 1 diabetes is complex and incompletely understood. Activated immune cells infiltrate the pancreatic islets at an early stage of the disease, and they produce and release cytokines, which may contribute to β-cell dysfunction and death. Several immunomodulatory agents with different mechanisms have recently been developed in order to suppress cytokine function such as MDL 201, 449A, a novel transcriptional inhibitor of TNF-α. At least in rodent β-cells, many of the toxic actions of cytokines depend on the synthesis of nitric oxide (NO). Aminoguanidine (AG), an inhibitor of NO formation, might therefore be an interesting compound for prevention of type 1 diabetes. Another substance that could influence the course of events leading to this disease is the pituitary hormone prolactin (PRL), since it has the ability to activate different immune cells. We have studied the effects of AG, PRL and MDL 201, 449A on the development of hyperglycaemia and pancreatic insulitis in multiple low dose streptozotocin induced autoimmune diabetes in mice. The natural course after syngeneic islet transplantation of pancreatic islets in NOD mice, a model of type 1 diabetes mellitus was also investigated. AG and PRL were also studied in vitro on cultured isolated rodent pancreatic islets. We suggest that the insulin-producing cells are specifically targeted by the inflammatory response after syngeneic islet transplantation in type 1 diabetic mice. Our data do not exclude a role for NO in type 1 diabetes, but it raises concerns about the use of AG as a therapeutic agent since an increased mortality and no decline in diabetes frequency was observed. AG did not seem to be directly harmful to β-cell function, but it could affect pancreatic and islet blood flows. PRL and MDL 201, 449A could both counteract hyperglycaemia and insulitis in the early phase of autoimmune diabetes.
|
153 |
Development of a screening assay for inhibitors of inflammation useful against pancreatic cancerGhafoory, Shima January 2009 (has links)
<p>Pancreatic cancer is the fourth most lethal cancer and ranks as the eighth most commonly diagnosed cancer worldwide. This is due to its rapid proliferation, strong metastatic potential and its delayed detection. One major risk factor for developing pancreatic cancer is the aggressive inflammatory disease chronic pancreatitis. Chronic inflammation frequently precedes the development of certain pancreatic cancers.</p><p>Inflammation is a protective and necessary process by which the body can alert the immune system of the existence of a wound or infection and mount an immune response to remove the harmful stimuli and start wound healing. The cross-talking of cells of the immune system and infected cells happens through cytokines, soluble proteins that activate and recruit other immune cells to increase the system’s response to the pathogen. Failure to resolve the injury can result in persistent cytokine production that in turn allows a cell that is damaged or altered to survive when in normal conditions it would be killed. Inflammation is thought to create a microenvironment that facilitates the initiation and/or growth of pancreatic cancer cells.</p><p>Cytokines use two important kinases for their signaling: Janus Kinases (JAKs) and Signal Transducers and Activators of Transcription (STATs). The JAKs are activated upon the binding of cytokines to their corresponding receptors. When activated, the JAKs activate STATs through tyrosine phosphorylation. The STATs transduce signals to the nucleus of the cells to induce expression of critical genes essential in normal physiological cellular events such as differentiation, proliferation, cell survival, apoptosis and angiogenesis. STAT3 (a member of the STAT family) is constitutively activated in some pancreatic cancers, promoting cell cycle progression, cellular transformations and preventing apoptosis. Therefore, STAT3 is a promising target for cancer treatment. Novel therapies that inhibit STAT3 activity in cancers are urgently needed. Natural products are a very good resource for the discovery of new drugs against pancreatic cancer.</p><p>Covering more than 70% of the Earths surface, The Ocean is an excellent source of bioactive natural products. Harbor Branch Oceanographic Institute’s Center for Marine Biomedical and Biotechnology Research (HBOI-CMBBR) situated in Florida, aims to find new marine natural products useful in disease prevention and drug therapy. Their current focus is to look for novel treatments for preventing both the formation of new pancreatic tumors and the metastasis of existing tumors.</p><p>The hypothesis of this degree project was that novel inhibitors of STAT3 useful in the treatment of pancreatitis and/or pancreatic cancer could be found from marine-natural products. The first specific aim of this degree project was to set up an assay to identify bioactive marine natural products as inhibitors of inflammation. Furthermore the assay was validated using a commercially available inhibitor of inflammation (Cucurbitacin I). The last aim was to further validate the assay by screening pure compounds and peak library material from the HBOI marine specimen collection.</p><p>At the end of the experimentation time, the assay still was not set-up as there were difficulties in proper cell culture techniques and the cell line did not respond as advertised. While the results were not as expected, the work performed resulted in familiarization with research laboratory practices and increased laboratory skills. Moreover, the results from the assays point to future directions to accomplish this project.</p> / Development of a screening assay for inhibitors of inflammation useful against pancreatic cancer
|
154 |
Hierarchical modeling of diabetes : a pilot studyNyman, Elin January 2009 (has links)
<p>In type 2 diabetes the concentration of glucose in the blood is increased, and tissues like fat and musclebecome less sensitive to insulin. These two phenomena are interrelated, but since the glucose-insulininterplay is highly complex, many aspects are still not understood. Here, a model-based approachmight help. Nevertheless, also a model-based approach has a limited impact, unless models for thesub-systems can be combined into a model for the whole-body regulation. Such a multi-level,module-based model is referred to as a hierarchical model, and this thesis is a proof-of-principle studyfor the future development of such models.</p><p>We have extended one of the best available models for the whole-body regulations, to include azoomable module for the fat tissue. The first step was to implement the whole-body model in thesoftware MathModelica, which support hierarchical modeling. Second, the originally mergedinsulin-responding module was sub-divided, so that a fat tissue was singled out. Third, a model for theinput-output profile for the fat tissue was developed by combining mechanistic knowledge withexisting and novel data from human fat cells. Finally, this detailed model was fitted to the profile of theoriginal fat model, and inserted in the whole-body model, with negligible effect on the whole-bodysimulations.</p><p>The resulting model has the ability to translate mechanistically oriented simulations on the biochemicallevel, which is the level were drugs act, to the whole-body level, which is of clinical interest. This is aquantum leap forward for modeling, and understanding, glucose homeostasis and type 2 diabetes.</p>
|
155 |
Co-localization of the astrocytic proteins Mts1 and clusterin in CNS injuryAugustsson, Mirja January 2005 (has links)
<p>In the case of injury to the CNS, different proteins act to repair and protect cells in the brain and spinal cord. In the present study, we looked at dorsal root injury and hypoglossal nerve avulsion and transection. Here we studied for the first time the expression of Parkin in these types of injuries. However the antibodies against Parkin used here have not been able to detect Parkin in the injuries examined, neither with fluorescence or using DAB. The roles of Mts1, GFAP, and clusterin after injury have been investigated earlier, but their co-localization in the same cells was first shown in this study in the hypoglossal nucleus with immunohisto-chemical methods. These results may also be of value in the process of finding an effective treatment for neurodegenerative disorders such as ALS.</p>
|
156 |
The Microvasculature of Endogenous and Transplanted Pancreatic Islets : Blood Perfusion, Oxygenation and Islet Endocrine FunctionOlsson, Richard January 2006 (has links)
<p>Type 1 diabetes mellitus affects millions of people worldwide. Islet transplantation is a minimal invasive surgical procedure that restores euglycemia and halts the progression of diabetic complications. However, despite transplantation of islets from multiple donors most patients reverse to hyperglycemia within five years. New strategies to improve long-term outcome of islet transplantation are indispensable. This thesis studied differences in the microvasculature between endogenous and transplanted pancreatic islets, and investigated means to improve islet graft revascularization and function. Islet graft microvessels were similar to endogenous islets responsive to adenosine, angiotensin II and nitric oxide (NO). Recipient hyperglycemia induced a higher basal islet graft blood flow, which also was less dependent on NO than in normoglycemic recipients. Transplantation of freshly isolated instead of cultured islets improved graft revascularization, oxygenation and function. Pretreatment of islets with vascular endothelial growth factor decreased their expression of matrix metalloproteinase-9 (MMP-9) and impaired graft revascularization. Moreover, MMP-9 pretreatment <i>per se</i> improved graft revascularization. <i>In vivo</i>, 20-25% of all endogenous rat islets was low oxygenated (pO<sub>2</sub> <10 mmHg). Changes in the islet mass, by means of whole-pancreas transplantation, doubled the fraction of low oxygenated islets in the endogenous pancreas of transplanted animals, whereas this fraction almost completely disappeared after a 60% partial pancreatectomy. Interestingly, oxygenation was related to metabolism, since well oxygenated islets <i>in vivo</i> had 50% higher leucine-dependent protein biosynthesis, which includes (pro)insulin biosynthesis. In intraportally transplanted islets, the low oxygenated fraction of islets was markedly increased one day post-transplantation, and the oxygenation remained low following revascularization. In summary, these data suggest that a better revascularization of transplanted islets can improve graft function. Furthermore, the oxygenation and metabolism of endogenous islets is tightly regulated. This regulation seems to be disturbed following transplantation, which may contribute to long-term islet graft failure. </p>
|
157 |
The Microvasculature of Endogenous and Transplanted Pancreatic Islets : Blood Perfusion, Oxygenation and Islet Endocrine FunctionOlsson, Richard January 2006 (has links)
Type 1 diabetes mellitus affects millions of people worldwide. Islet transplantation is a minimal invasive surgical procedure that restores euglycemia and halts the progression of diabetic complications. However, despite transplantation of islets from multiple donors most patients reverse to hyperglycemia within five years. New strategies to improve long-term outcome of islet transplantation are indispensable. This thesis studied differences in the microvasculature between endogenous and transplanted pancreatic islets, and investigated means to improve islet graft revascularization and function. Islet graft microvessels were similar to endogenous islets responsive to adenosine, angiotensin II and nitric oxide (NO). Recipient hyperglycemia induced a higher basal islet graft blood flow, which also was less dependent on NO than in normoglycemic recipients. Transplantation of freshly isolated instead of cultured islets improved graft revascularization, oxygenation and function. Pretreatment of islets with vascular endothelial growth factor decreased their expression of matrix metalloproteinase-9 (MMP-9) and impaired graft revascularization. Moreover, MMP-9 pretreatment per se improved graft revascularization. In vivo, 20-25% of all endogenous rat islets was low oxygenated (pO2 <10 mmHg). Changes in the islet mass, by means of whole-pancreas transplantation, doubled the fraction of low oxygenated islets in the endogenous pancreas of transplanted animals, whereas this fraction almost completely disappeared after a 60% partial pancreatectomy. Interestingly, oxygenation was related to metabolism, since well oxygenated islets in vivo had 50% higher leucine-dependent protein biosynthesis, which includes (pro)insulin biosynthesis. In intraportally transplanted islets, the low oxygenated fraction of islets was markedly increased one day post-transplantation, and the oxygenation remained low following revascularization. In summary, these data suggest that a better revascularization of transplanted islets can improve graft function. Furthermore, the oxygenation and metabolism of endogenous islets is tightly regulated. This regulation seems to be disturbed following transplantation, which may contribute to long-term islet graft failure.
|
158 |
Studies on Airway Surface Liquid in Connection with Cystic FibrosisKozlova, Inna January 2008 (has links)
Cystic fibrosis (CF) is one of the most common fatal inherited diseases, most prevalent among Caucasians. CF is caused by a mutation in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR), which helps to create sweat, digestive juices, and airway surface liquid (ASL). The airways are covered with a thin layer of fluid, the airway surface liquid, in which the cilia bathe. Defective or absent CFTR leads to a defective water and ion transport in the epithelial cells, which results in viscous mucus, defective ciliary clearance, bacterial inflammation and tissue damage. The volume and composition of ASL are important in the pathogenesis of cystic fibrosis and it is therefore relevant to determine its composition. However, there are a number of difficulties in determining the ionic composition of the ASL due to its small volume. Literature data vary from very hypotonic to markedly hypertonic. These controversial data inspired the development of a simple method for determining the elemental composition of the ASL in different animal species and humans. Two techniques were developed to determine the composition of ASL, from which indirect information on chloride transport in airway epithelium can be obtained. In the first method, tissue is removed from the animals under anesthesia, frozen and analyzed in the frozen-hydrated state. In the second method, the ASL is collected with small dextran (Sephadex) beads; the dried beads are then analyzed by X-ray microanalysis. The Sephadex-bead method appears more accurate compared to the frozen-hydrated samples. Both methods were applied to collect tracheal and/or nasal fluid in pigs, normal and transgenic cystic fibrosis mice, the fluid covering the apical surface of normal bronchial cells (16HBE14o-) and a cystic fibrosis human bronchial cell line (CFBE41o-), and finally nasal fluid in healthy and diseased subjects. The ionic composition of the ASL was isotonic both in pigs and healthy human subjects. CF patients had much higher levels of Na and Cl ions than healthy subjects. The ASL under control conditions was hypotonic in mice and cell cultures, whereas the concentrations of Na and Cl ions in the species with the ΔF508 mutation or absent CFTR were significantly higher than in the corresponding controls. It was also demonstrated that the ionic composition of the ASL can be influenced by pharmacological treatment. The study confirms earlier findings that CFTR also is involved in bicarbonate transport. Mist tent therapy has been tested in the study of a treatment for CF patients, in order to hydrate the viscous mucus. But the effect of mist tent therapy on ion concentrations in the ASL appeared to be short-lived, although no patients became chronically colonized with pseudomonads while on nocturnal mist tent therapy.
|
159 |
Peptidyl-prolyl cis-trans Isomerases in the Chloroplast Thylakoid LumenEdvardsson, Anna January 2007 (has links)
The Sun is the ultimate energy source on Earth. Photosynthetic organisms are able to catalyze the conversion of solar energy to chemical energy by a reaction called photosynthesis. In plants, this process occurs inside a green organelle called the chloroplast. The protein complexes involved in the photosynthetic light reactions are situated in the thylakoid membrane, which encloses a tiny space called lumen. The Peptidyl-Prolyl cis-trans Isomerase (PPIase) family is the most abundant protein family in the thylakoid lumen. The three PPIase subfamilies, cyclophilins, FKBPs (FK506 binding proteins) and parvulins form a group by their enzymatic activity despite lack of sequence similarity between the subfamilies. Cyclophilins and FKBPs, collectively called immunophilins, were originally discovered as the targets of the immunosuppressive drugs cyclosporine A and FK506, respectively. By suppressing the immune response in humans, these immunophilin-drug complexes revolutionized the field of organ transplantation by preventing graft rejection. Cis-trans isomerization of peptide bonds preceding the amino acid proline is the rate-limiting step of protein folding and several immunophilins have been shown to be important for catalysis of protein folding in vivo. PPIases have been found to be part of large protein complexes as well as in functions such as signalling, protein secretion, RNA processing and cell cycle control. A picture is therefore emerging in which the actual interaction between the PPIase and its target is perhaps more important than the PPIase activity. In the present work, PPIases have been characterized in the chloroplast thylakoid lumen of Spinacia oleracea (spinach) and Arabidopsis thaliana (Arabidopsis). The most active PPIase in the spinach lumen was identified as the cyclophilin TLP20. AtCYP20-2, the Arabidopsis homologue of TLP20, was found to be upregulated at high light and attached to the thylakoid membrane, more precisely to the outer regions of photosystem II supercomplexes. In Arabidopsis, up to 5 cyclophilins and 11 FKBPs were predicted to reside in the lumen. Of these 16 immunophilins, only 2 were identified as active PPIases and significant differences were observed between the two plant species. AtCYP20-2, like TLP20, is an active isomerase although AtFKBP13 is the most active PPIase in the lumen of Arabidopsis. Mutant Arabidopsis plants deficient in AtCYP20-2 displayed no phenothypical changes or decrease in total lumenal PPIase activity. Being the only active PPIase in the mutants, the redox sensitive AtFKBP13 is proposed to compensate for the lack of AtCYP20-2 by oxidative activation. In agreement with the experimental data, the sequence analyses of catalytic domains of lumenal immunophilins demonstrate that only AtCYP20-2 and AtFKBP13 possess the amino acids found essential for PPIase activity in earlier studies of human cyclophilin A and FKBP12. It is concluded that with the exception of AtCYP20-2 and AtFKBP13 most immunophilins in the lumen of Arabidopsis lost their PPIase activity on peptide substrates and developed other specialized functions.
|
160 |
Oscillatory Signaling and Insulin Secretion from Single ß-cellsIdevall Hagren, Olof January 2010 (has links)
cAMP and Ca2+ are key regulators of exocytosis in many cells, including insulin-secreting pancreatic β-cells. Glucose-stimulated insulin secretion from β-cells is pulsatile and driven by oscillations of the cytoplasmic Ca2+ concentration ([Ca2+]i), but little is known about the kinetics of cAMP signaling and the mechanisms of cAMP action. Evanescent wave microscopy and fluorescent translocation biosensors were used to monitor plasma membrane-related signaling events in single MIN6-cells and primary mouse β-cells. Glucose stimulation of insulin secretion resulted in pronounced oscillations of the membrane phospholipid PIP3 caused by autocrine activation of insulin receptors. Glucose also triggered oscillations of the sub-plasma membrane cAMP concentration ([cAMP]pm). These oscillations were preceded and enhanced by elevations of [Ca2+]i, but conditions raising cytoplasmic ATP triggered [cAMP]pm elevations without accompanying changes in [Ca2+]i. The [cAMP]pm oscillations were also synchronized with PIP3 oscillations and both signals were suppressed after inhibition of adenylyl cyclases. Protein kinase A (PKA) was important for promoting concomitant initial elevations of [cAMP]pm and [Ca2+]i, and PKA inhibitors diminished the PIP3 response when applied before glucose stimulation, but did not affect already manifested PIP3 oscillations. The glucose-induced PIP3 oscillations were markedly suppressed in cells treated with siRNA against the cAMP-dependent guanine nucleotide exchange factor Epac2. Pharmacological activation of Epac restored PIP3 responses after adenylyl cyclase or PKA inhibition. Glucose and other cAMP-elevating stimuli induced redistribution of fluorescence-tagged Epac2 from the cytoplasm to the plasma membrane. This translocation was modulated by [Ca2+]i and depended on intact cyclic nucleotide-binding and Ras-association domains. In conclusion, glucose generates cAMP oscillations in β-cells via a concerted action of Ca2+ and metabolically generated ATP. The oscillations are important for the magnitude and kinetics of insulin secretion. While both protein kinase A and Epac is required for initiation of insulin secretion the cAMP-dependence of established pulsatility is mediated by Epac2.
|
Page generated in 0.0387 seconds