• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 281
  • 14
  • Tagged with
  • 295
  • 294
  • 293
  • 113
  • 111
  • 111
  • 109
  • 106
  • 106
  • 92
  • 88
  • 88
  • 86
  • 86
  • 85
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Studies of transforming growth factor alpha in normal and abnormal growth

Hallbeck, Anna-Lotta January 2007 (has links)
Regulation of growth is of fundamental importance for development of the organism and to maintain health. The induction of cell proliferation and matrix production are influenced by several different signaling systems, most importantly by growth factors. The human HER-family of growth factor ligands and receptors is one of the most studied and, at present, one of the most complex including 4 tyrosine kinase receptors and at least 11 different ligands cooperating in the transfer of signals. The HER-family growth responses are also influenced by other intercellular and extracellular signals, including matrix components, cytokines and hormones mediating e.g. inflammation. HER-1 (EGFR) is one of the best known and most extensively studied growth factor receptors. TGF-alpha is possibly the most potent HER-1 ligand and influences wound healing, epidermal maintenance, gastrointestinal function, lactation, pulmonary function and more. Several studies have shown important regulatory functions for some inflammatory cytokines on TGF-alpha production in white blood cells. HER-1 is widespread in epithelial cells but also in mesenchymal cells such as fibroblasts, osteogenic and chondrogenic cells. Consequently, many tumors arising from these cell types express HER family members and often show TGF-alpha and/or HER activation. Indeed, mammary cancer development has been shown when over expressing both TGF-alpha and HER-2 in mouse mammary cells in vivo. In recent years the first HER-1 and HER-2 inhibitors have come into clinical practice for treatment of breast cancer, lung cancer and gastrointestinal cancers, sometimes with great success. However, more knowledge is needed concerning the inflammatory regulation of HER-family expression including where and how the ligands and receptors cooperate. Therefore we were interested in studying the role of TGF-alpha in normal and abnormal growth. First we showed that the acute inflammatory cytokine IL-6 regulates TGF-alpha expression in U-937-1 monocytoid cells. Secondly, we detected a possible long-term enhancing influence of singledose UVR on HER-1 expression in normal human melanocytes. We continued thirdly by revealing TGF-alpha production concomitant with HER-2 in normal human synovia and release of soluble TGF-alpha into the synovial fluid. Both TGF-alpha and HER-2 production were significantly increased in inflammatory joint conditions, e.g. RA. Fourthly, we demonstrated expression of TGF-alpha, HER-1 and HER-2 in synovial sarcoma cells in culture; the observed HER-2 phosphorylation was dependent on ligand induced HER-1 activation. The presented results indicate that TGF-alpha expression can be enhanced by acute inflammatory cytokine IL-6, possibly contributing to growth stimulatory effects assigned to IL-6 itself. The acute effects of UVR on melanocytes mediate up-regulated steady-state expression of HER-1, constituting a potential target for locally produced TGF-alpha that may induce melanocyte proliferation. TGF-alpha and HER-2 seem to have a role in the maintenance of synovial joint tissues. Upregulation of TGF-alpha and HER-2 in inflammatory joint conditions, e.g. RA, represents a novel mechanism for synovial proliferation contributing to joint deterioration. TGF-alpha, HER1 and HER-2 may have a role in synovial sarcoma proliferation; further investigation is needed to evaluate HER-family inhibitors as a possible treatment alternative in this type of cancer.
122

T-Cell Protein Tyrosine Phosphatase, a Regulator of the PDGF Signaling Pathway

Karlsson, Susann January 2009 (has links)
Platelet-derived growth factor (PDGF) is a potent stimulator of cell growth, survival and motility. PDGF exerts its function by binding to specific tyrosine kinase receptors, initiating receptor auotphosphorylation and initiation of specific signaling pathways that regulates the cellular response. It is critical that these signals can be modulated and terminated, since over-activation of signaling pathways are often found in diseases, such as cancer. Protein tyrosine phosphatases (PTPs) counteract the tyrosine kinases by dephosphorylating proteins, thereby playing a crucial role in the control of signaling events. The aim of this thesis has been to study the regulation of PDGF receptor signaling by the T-cell protein tyrosine phosphatase (TC-PTP). In the first two studies, we demonstrated that loss of TC-PTP specifically redirected the PDGF β-receptor towards a rapid Rab4a-dependent recycling after ligand-induced internalization. Furthermore, we found that the sorting of activated PDGF β-receptor into the recycling pathway was dependent on sequential PKCα and Rab4a activation. Since the PDGF α-receptor did not recycle in the absence of TC-PTP, this study displays the first evidence of differences in trafficking of the PDGF receptor family members. PDGF β-receptor recycling was also induced by activating PKCα through the LPA receptor. The LPA-induced PDGF β-receptor recycling correlated with increased receptor phosphorylation and cell migration at low concentrations of PDGF-BB. The data suggests that PKCα activation could serve as a point of cross-talk between receptor families, regulating the duration and magnitude of PDGF β-receptor signaling. In the last study, we searched for novel substrates for TC-PTP downstream of the PDGF β-receptor, and identified the pyruvate kinase M2, PK-M2, as a possible substrate. PK-M2 is expressed in cells that proliferate rapidly, including tumor cells. Our data suggests that TC-PTP can interact with the glycolytic complex, affecting the activity of PK-M2 and hence, altering the glucose metabolism for proliferating tumor cells.
123

Teratogenicity Involved in Experimental Diabetic Pregnancy

Gäreskog, Mattias January 2006 (has links)
Maternal diabetes is associated with increased risk of growth disturbances and congenital malformations. The malformations rate in the offspring of diabetic mothers is 2-3 fold higher compared to infants of nondiabetic mothers. In this thesis we have investigated the role of the protein kinase C (PKC) pathway and the apoptotic machinery in embryopathy. We investigated the involvement of PKC isoforms in the embryopathy of diabetic rat pregnancy. Embryos of diabetic rats showed altered activity and protein distribution of several PKC isoforms compared with embryos of normal rats. Using whole embryo culture we found increased activity of PKC-delta and PKC-zeta after 24h of culture and increased rate of malformations and growth retardation in embryos cultured in high glucose concentration compared to embryos cultured in low glucose concentration. Addition of α-cyano-4-cinnamic acid and N-acetylcysteine to the culture medium normalized malformations and growth retardations whereas specific PKC-inhibitors abolished malformations and partly restored the growth retardations. All treatment normalized glucose-induced increase of PKC activity. Estimated occurrence of apoptosis in embryos of diabetic rats and in embryonic cells exposed to high glucose concentration showed increased rate of pro-apoptotic markers. The increased apoptosis in the high glucose exposed embryonic cells was normalized by supplementation of N-acetylcysteine or apoptosis inhibitor. Treatment with vitamin E and folic acid to diabetic pregnant rats decreased diabetes-induced malformations and resorptions, concomitant with normalization of apoptotic protein levels. These results suggest that oxidative stress is augmented in embryos of diabetic rats and that it also plays a role in the activation of PKC and apoptosis. We used antioxidative treatment with beneficial effect although we could not completely abolish the embryonic demise; this may indicate that other mechanisms are involved in diabetic embryopathy. Further studies are needed to develop multi-nutrient dietary supplement to eliminate embryonic abnormalities induced by maternal diabetes.
124

The neuropeptide VIP and the IL-6 family of cytokines in bone : effects on bone resorption, cytokine expression and receptor signalling in osteoblasts and bone marrow stromal cells

Persson, Emma January 2005 (has links)
Bone tissue is continuously degraded and rebuilt to respond to the needs of the body. Cells of the osteoblast lineage are responsible for the formation of bone, whereas the resorption of bone tissue is carried out by osteoclasts. To prevent imbalance between bone formation and resorption, these processes are delicately regulated by a complex network of both systemic factors and factors produced locally in the bone microenvironment, including members of the IL-6 family of cytokines. During the last decades, the presence of nerve fibers in skeletal tissue and presence of receptors for several neurotransmitters on both osteoblasts and osteoclasts, have suggested a possible role for neuropeptides in the regulation of skeletal metabolism. The overall aim of this study was to investigate the roles of cytokines in the IL-6 family and the neuropeptide VIP in regulation of osteotropic cytokine expression and bone metabolism in vitro. In Paper I, stimulation of bone resorption by the cytokine IL-6, in the presence of its soluble receptor sIL-6R, was demonstrated in mouse calvarial bones. OSM and LIF, other members of the IL-6 family of cytokines, were also shown to increase bone resorption. Furthermore, IL-6+sIL-6R, LIF, and OSM increased the expression of RANKL, which by binding to its receptor RANK functions as a crucial inducer of osteoclast formation and activation. In Paper II-IV, the effects of the neuropeptide VIP and related peptides on expression of osteotropic cytokines by osteoblasts and bone resorption in vitro have been studied. VIP and PACAP-38 both increased IL-6 production in osteoblasts in a time- and concentration-dependent manner. In contrast, no effect was seen with the related peptide secretin, indicating that the effects were mediated by the VPAC2 receptor. VIP and PACAP, in contrast to secretin, also induced IL-6 promoter activity in osteoblastic MC3T3-E1 cells transfected with an IL-6 promoter/luciferase construct. The effects of VIP on IL-6 were shown to be mediated by several intracellular pathways, including cAMP/PKA/CREB, AP-1, and C/EBP, but not NF-kB or the cAMP-activated Epac pathway. The release of IL-6 from osteoblasts was increased by several pro-inflammatory osteotropic cytokines, including interleukin-1b, an effect that was further potentiated by VIP, indicating a possible neuro-immunomodulatory interaction in the regulation of bone metabolism. VIP and PACAP-38 also increased the osteoblastic expression of RANKL and decreased the expression of OPG and M-CSF, factors crucial in regulation of differentiation and activation of osteoclasts. Although this indicated a possible bone resorptive effect, VIP was found to decrease osteoclast formation and bone resorption by directly targeting osteoclast progenitor cells through an inhibitory mechanism. In conclusion, the results in this thesis indicate that several cytokines in the IL-6 family stimulate bone resorption in calvarial bones in vitro, most likely through the RANKL-RANK interaction. Furthermore, expression of the osteotropic cytokine IL-6 in osteoblasts is stimulated by the neuropeptide VIP through VPAC2 receptors via several intracellular pathways, further strengthening the role of neuropeptides as local regulators of bone metabolism.
125

Cholesterol in T cells : homeostasis, plasma membrane organization and signaling

Mahammad, Saleemulla January 2010 (has links)
The plasma membrane of eukaryotic cells contains cholesterol and glycosphingolipids enriched nanodomains known as lipid rafts; which are believed to exist in a liquid ordered (lo) state. Methyl-beta-cyclodextrin (MBCD) is used to deplete cellular cholesterol and a widespread assumption is that MBCD preferentially targets cholesterol in lipid rafts. To analyze this in T cells a progressive cholesterol extraction protocols was established. At 37ºC, MBCD treatment does not lead to the preferential loss of cholesterol from TX-DRMs. At 0ºC only 35% of total cholesterol could be extracted demonstrating that less than 35% of the cell’s cholesterol is found in the plasma membrane. Moreover, incubation of cells at 0ºC causes loss of plasma membrane cholesterol and an increase in cholesteryl esters. The increase in cholesterol esters upon cold exposure is linked to the cholesterol concentration induced activation of ACAT enzyme which converts cholesterol to cholesteryl esters. Cholesterol concentration specific activation of ACAT and conversion of cholesterol to cholesteryl esters during the loading of cholesterol onto T cells by MBCD was also observed. By using MBCD for progressive cholesterol depletion from T cells at 37ºC, the effect of cholesterol depletion on T cell signaling was addressed. At 10-20% cholesterol depletion levels, tyrosine phosphorylation is increased and ERK is activated. Peripheral actin polymerization, cell spreading and membrane protrusions are also triggered by limited cholesterol depletion. Upon limited cholesterol depletion aggregation of lipid rafts in the plasma membrane was observed. The aggregation of lipid rafts upon cholesterol depletion does not dependent on the signaling proteins such as Src-kinases. Upon cholesterol depletion there is an increase in overall plasma membrane order, indicative of more ordered domains forming at the expense of disordered domains. / At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: In press.
126

Role of Heparan Sulfate N-sulfation in Mouse Embryonic Development

Dagälv, Anders January 2010 (has links)
Heparan sulfate (HS) is a sulfated glycosaminoglycan expressed by all cells in the body. It is found at the cell surface and in the extracellular matrix where it binds a large amount of various ligands including growth factors and morphogens. HS is important for building up morphogen gradients during embryonic development and to act as coreceptors for signaling molecules. Many different Golgi enzymes are involved in the biosynthesis of HS. It is known that some of these enzymes interact with each other but not how the whole biosynthesis machinery works or how the cell regulates the structure of the HS that it produces. In this thesis, cells and mice deficient in two of these biosynthetic enzymes, glucosaminyl N-deacetylase/N-sulfotransferase-1 (NDST1) and the isoform NDST2 have been studied. NDSTs perform the first modifications during biosynthesis where they replace N-acetyl groups on N-acetyl-glucosamine units with sulfate groups. It is known that deficiency of NDST1 is lethal, while lack of NDST2 only results in abnormal connective tissue type mast cells. Here it is shown that deficiency of both NDST1 and NDST2 is embryonically lethal. The embryonic stem (ES) cells extracted from the inner cell mass of double knockout blastocysts show in addition an impaired differentiation capacity compared to wild-type ES cells and fail completely to differentiate into cardiac muscle cells which NDST1-/-, NDST2-/- and wild-type ES cells all do. Cultured mast cells that lack NDST2 produce heparin that is low-sulfated compared to wild-type HS. To our surprise, we could show that mast cells deficient in NDST1 instead produce a more highly sulfated heparin than wild-type cells. We use a model that predicts that the biosynthesis enzymes work together in a multienzyme complex, the GAGosome, to explain our results. We hypothesize that NDST1 has a higher affinity for the GAGosome than NDST2 which only in the absence of NDST1 gets incorporated into the enzyme complex. When all GAGosomes contain NDST2, a more highly sulfated glycosaminoglycan chain will be synthesized. A splice variant of NDST1, NDST1S, has also been studied. We could show that NDST1S lacks enzyme activity but that it probably has the capacity to incorporate into GAGosomes. Overexpression of NDST1S results in altered structure of the HS produced by the cells. We speculate that expression of the splice variant during development may be one way to regulate HS structure.
127

The Role of Microvascular Pericytes in the Generation of Pro-fibrotic Connective Tissue Cells : Investigations in vitro and in Reactive Tissues in vivo

Karén, Jakob January 2010 (has links)
Pericytes are cells of mesenchymal origin located on the abluminal side, juxtapositioned to the endothelial cells in capillaries, venules and small arterioles. They are important for maintaining vessel integrity in resting tissues as well as the formation and stabilization of new vessels. They have been suggested to function as mesenchymal stem cells thereby contributing to the connective tissue cell population in reactive tissues. In this thesis the role of pericytes as progenitors for fibroblasts was further defined both in vitro and in vivo. In the first study connective tissue cells of mesenchymal origin were investigated based on their marker expression and relation to the microvasculature. The expression of alpha smooth muscle actin (α-SMA), a marker for myofibroblasts, was compared to the expression of certain integrins in three reactive conditions in human tissues. There was a co-localization of α-SMA and α1β1 integrins, indicating that α1 integrin was important for acquiring the α-SMA myofibroblast phenotype. To further investigate this, two animal models for carcinoma growth and wound healing using α1 deficient mice were employed. Reduction/lack of α-SMA expressing myofibroblasts substantiated or findings in human tissues, strengthening the hypothesis that the α1 integrin is important for the differentiation of α-SMA expressing myofibroblasts. In study two the effects of the HDAC inhibitor valproic acid (VPA) on pericyte function in vitro was investigated. This revealed that VPA had an inhibitory effect on pericyte proliferation, migration and differentiation into collagen type I producing fibroblasts. In addition qPCR array studies on angiogenesis related gene expression identified an up-regulation of genes involved in vessel stabilization in VPA treated pericytes. This suggests that VPA promotes a pericyte phenotype favoring vessel stability. In study three the differentiation from early mesenchymal stem cell like pericyte to fully differentiated fibroblast was further defined by flow cytometry marker analysis. By isolating pericytes from human placenta with a phenotype resembling the in vivo phenotype the differentiation pathway could be defined in five consecutive steps. The five steps were defined by their marker expression and their ability to give rise to the other cell populations in the differentiation lineage, as well as their slow cycling characteristics. A better understanding of how connective tissue cells are derived in fibrotic conditions may be beneficial in trying to modulate the outcome of the healing process towards optimal tissue regeneration with minimal fibrosis.
128

Extracellular Matrix and Connective Tissue Cells of the Tumor Microenvironment

Friman, Tomas January 2010 (has links)
In addition to malignant cells, solid tumors comprise supporting stromal tissue that consists of extra cellular matrix (ECM), connective tissue cells, inflammatory cells and blood vessels. The stromal compartment and the malignant cells together shape the tumor microenvironment that in turn determines tumor progression and efficacy of anti-tumor treatments. In this thesis, studies that investigate the roles of different kinds of interactions between tumor cells and stromal cells were undertaken. Further, growth factors that have important roles in interactions between tumor cells and stromal cells were investigated in a non-tumor environment. Tumor cells were found to modulate the response to the platelet derived growth factor  (PDGF) by microvascular pericytes, a cell type found in the vasculature of solid tumors. The importance of this growth factor in biology of tumors has earlier been shown, but here it was shown that PDGF also modulate the ECM phenotype of solid tumors. The ECM of tumors treated with an inhibitor of PDGF receptor (PDGFR) signaling induced a less fibrotic collagen scaffold, which could explain how PDGFR inhibition in earlier reports lowered tumor interstitial fluid pressure (IFP). Lowering the normally high IFP in tumors increases efficacy of chemotherapy. The integrin αVβ3 is activated downstream of PDGF-B in acute inflammations, and this integrin is important for raising IFP in loose connective tissue in such conditions. However, in tumors we found that lack of the β3 subunit lead to an increased IFP, which were attributed to a more fibrotic ECM phenotype. In addition to PDGF-B, transforming growth factor β (TGFβ) is an important growth factor in the biology of tumors. These two growth factors were separately overexpressed in mouse skin and they both induced an inflammatory response. Expressed in a tumor free context, they evoked a response that was in many ways reminiscent of what can be observed in the tumor microenvironment. This thesis contributes further understanding of how the complex tumor microenvironment affects the phenotype of solid tumors.
129

Evaluation of the ADVIA®60 on highvalue platelets

Ekbom, Lisa H January 2005 (has links)
Platelets are the smallest cells in the blood. They are formed in the bone-marrow and are important for the blood coagulation. Platelet tranfusions are given to patients propyhlactically before an operation but also in therapeutical purpose in connection with bleeding. It’s importent that the quality controls of the platelet concentrates are reliable. ADVIA®60 (Bayer HealthCare) is a fully automated cell counter which uses impedance principle to count platelets in blood samples. The purpose of the study was to evaluate this new instrument for use in the blood bank of Akademiska Sjukhuset in Uppsala. The instrument was bought to be used for quality control of platelet concentrates. 30 samples from platelet concentrates, from both apheresis and from buffy coats, were analyzed 10 times each on ADVIA®60 and the coefficient of variation (CV) was calculated for each sample. CV variated from 0,8 % to 2,9 % which is good considering that according to Bayer HealthCare the CV should be < 5 % for thrombocytes on ADVIA®60. The instrument was newly calibrated when the study was performed. Platelet count can also be performed by immunological or optical principles.
130

Hypoxia, PDGF and VEGF in Vascular Development

Nilsson, Ingrid January 2006 (has links)
The mechanisms behind many important aspects of blood- and lymphatic vessel formation have yet not been elucidated in detail. The primary objectives of this thesis have therefore been to study the effects of hypoxia, platelet-derived growth factor (PDGF) and vascular endothelial growth factors (VEGFs) on vascular development and function. In conditions of low oxygen pressure, hypoxia, the survival of the organism is critically dependent on the ability to compensate for the reduced oxygen levels by promoting blood vessel growth and oxygen-independent energy production. Many direct effects of hypoxia in cells are attributed to the induction of a family of hypoxia-inducible transcription factors (HIFs) which control the expression of specific target genes. We found that capillary endothelial cells (ECs) respond to hypoxia with upregulation of genes involved in growth and remodeling of blood vessels. On the other hand, vein ECs responded to hypoxia with increased expression of genes involved in lymphatic vessel growth. Using differentiating embryonic stem (ES) cells, we have shown that hypoxia upregulates expression of VEGF receptor-3 (VEGFR-3) on blood vascular ECs. Furthermore, we have provided evidence for a critical role of VEGFR-3 in hypoxia-induced blood vessel development. Activation of PDGF receptor-β (PDGFR-β) on early vascular progenitors in differentiating ES cells or in mice induces blood vessel differentiation, while negatively influencing early hematopoiesis. PDGFR-β expression on vascular progenitors may therefore play a role in guiding differentiation of the vascular lineages. We have investigated the usefulness of differentiating ES cells as a model to study early lymphatic development. Administration of VEGF-C and VEGF-A induced formation of lymphatic vessel-like structures that seemed connected to the blood vasculature, supporting the general view that lymphatic ECs are derived from blood vascular ECs. In summary, this thesis has provided new insights in the contribution of different growth factors in hematopoietic, blood- and lymphendothelial development.

Page generated in 0.0638 seconds