• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 11
  • 7
  • Tagged with
  • 68
  • 68
  • 61
  • 61
  • 61
  • 17
  • 9
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Laboratory method for the study of moisture-induced waviness in paper

Land, Cecilia January 2004 (has links)
<p>Paper that is subjected to moisture undergoes dimensional changes. It expands during moistening and shrinks during drying. When the paper is under tension between rollers, the effects are complex since shrinkage and expansion are restricted in the width direction. Waves can then appear on the paper web. This can be a problem in heatset web offset printing. The problem is known as waviness or fluting. The printed papers exhibit a wavy shape, which is visually disturbing due to light reflections which create glossy streaks. The aim of the work described in this thesis was to develop a method suitable for studying the moisture- and tension-induced waviness. Experiments were carried out on a laboratory scale to study how such waves develop during moistening and drying. The experimental setup was based on a modified tensile tester. A CCD camera and image analysis based on the STFI-OptiTopo technique was used to characterise the waviness. Moistening and drying were achieved by changing the surrounding air humidity. The method was used to study the effect of moisture uptake by the paper, and to evaluate the effect of tension on the waviness. It was found that increasing moisture resulted in a higher waviness amplitude, but that the web tension controlled the wavelength of the waviness. A high tension gave rise to a shorter wavelength. The measured wavelength was compared with a previously suggested model and the predicted wavelength was about twice as high as the measured wavelength.</p> / <p>When paper becomes damp it can develop waves which can be a problem with heatset web offset printing. Paper with waves may have glossy streaks after printing. Laboratory experiments studied the effect of moisture uptake by the paper. Readings were taken at a range of air humidities. The effect of tension on the waviness was also measured. The waviness was characterised using a charge coupled device (CCD) camera and the STFI-Packforsk OptiTopo technique to analyse the images. When the humidity was increased the amplitude of the waves increased. A high tension resulted in shorter wavelengths. Results from a previous model were used as a comparison.</p>
22

Uma sistemática de manutenção para o gerenciamento e controle de paradas planejadas em processos de produção de celulose e papel / Systematic planning for the management and control of planned stops within the cellulose pulp and paper production processes

Parrilla, Fabrício Rogério 08 March 2002 (has links)
As paradas planejadas gerais nas indústrias papeleiras, normalmente realizadas anualmente, são fundamentais devido ao processo produtivo e estratégicas para a competitividade no setor. Face à sofisticação dos equipamentos e instalações, denotando intervenções complexas e de grande porte, altos custos e riscos potenciais de acidentes e danos ambientais, procura-se uma caracterização desses eventos como grandes empreendimentos. Esses, fazem parte da estratégia de manutenção definida para a planta fabril, sendo gerenciados pela equipe de manutenção que atua voltada a disponibilidade, confiabilidade, qualidade e produtividade. Neste sentido, este trabalho desenvolve uma sistemática de manutenção para o gerenciamento e controle das paradas planejadas gerais em processos de produção de celulose e papel, com a finalidade de facilitar e promover o sucesso na execução de todas as atividades e etapas envolvidas. Para isso, contextualiza-se o setor e as paradas planejadas; são revisados os principais conceitos, técnicas, práticas e ferramentas características à gestão da manutenção, qualidade e conhecimento; são estudadas abordagens específicas voltadas aos processos de produção contínua; é verificada uma prática empresarial do setor e; finalmente, é proposta uma sistemática fundamentada nestas pesquisas. Como principais benefícios observam-se: a sinergia entre as equipes de manutenção e operação; a valorização da manutenção na gestão do processo produtivo; a competitividade do negócio; a otimização dos recursos e as alavancagens de produtividade. / The general planned stops within the paper industries, once in the year as a rule, are due to the productive process and competitiveness strategies in that business sector. Current sofistified equipments and facilities call for complex and significant interventions. Because high costs involved and potential risks of both accidents and environmental nature damage, those events are characterized as important projects. They are part of the strategy defined for the manufacturing plant, thus being managed by the maintenance team focusing availability, reliability, quality and productivity. In view of such scenario, this paper develops a maintenance system addressing the management and control of planned stops within the cellulose pulp and paper production processes. The scope is to facilitate and promote the success when carrying out all the activities involved. Therefore, the context of the sector and planned stops is discussed; the main concepts, techniques, practices and tools specific to the management of maintenance, quality and knowledge are reviewed; approaches specific to the continuous production processes are studied; business practices within the sector are analyzed, and, finally, a systemic approach proposal is made grounded on the preceding research. The most important benefits observed were: the achievement of synergy among the maintenance and production teams; the true understanding of the maintenance value in the productive process; the business competitiveness; resources optimization as well as productivity boosting.
23

Aktivering av en dissolvingmassa med enzymer före en konventionell viskosprocess / Activation of Dissolving Pulp with Enzymes prior to Viscose Manufacturing

Erhardsson, Erik January 2009 (has links)
<p>In conventional viscose manufacturing, a large amount of carbondisulfide is consumed. This amount has to be decreased to keep the production cost down and to reduce the environmental impact. The purpose with this work was to show if an enzyme treatment of a dissolving pulp could increase the degree of substitution in the viscose so that the amount of carbon disulfide consumed in the process could be decreased. Previous investigations by Kvarnlöf (2007), Engström et.al. (2006) and Henriksson et.al. (2005) has shown that the reactivity of a dissolving pulp (the cellulose raw material) increased when it was pre-treated with endoglucanase (enzyme). Kvarnlöf (2007) also showed that the amount of carbon disulfide that is needed to produce an ordinary viscose (in this work a more viscous viscose has been investigated) could be reduced with one third because of the enzyme treatment.</p><p> </p><p>In this thesis, viscose has been manufactured in a laboratory where the process has been adapted to look like the industrial as far as possible. Analyses were done on the viscose viscosity and degree of substitution. A reference curve was made with the percentage carbon disulfide load versus the viscose gamma number (degree of substitution). Then it was investigated how an enzyme treatment of the dissolving pulp affected the viscose. After the enzyme treatment, the manufacturing process for viscose was done in the exact same way as when the reference tests were done. The enzyme used in this thesis was Carezyme which contents endoglucanase. Then the results from the analyses of the viscose manufactured from enzyme treated dissolving pulp and the reference curve was compared. A positive result would have been that viscose manufactured with enzyme treatment gets a higher gamma number than viscose, with the same load of carbon disulfide, manufactured in the regular way.</p><p> </p><p>The results showed that the degree of substitution had no effect at all; the viscose that has been manufactured from enzyme treated dissolving pulp resulted in gamma numbers on or very close to the reference curve. The only effect that could be shown was a decrease in viscosity, which unfortunately was an unwanted effect. The enzyme treatment has also hampered the process, where shorter fibres among other things have given poorer dewatering properties. Analyses on the viscose manufactured in the laboratory showed that it didn't have the same characteristics as viscose manufactured in a plant.</p> / <p>I den konventionella tillverkningsprocessen för viskos förbrukas stora mängder koldisulfid. Denna mängd behöver minskas, både för att hålla nere produktionskostnaderna men också för att minska miljöpåverkan. Syftet med arbetet var att undersöka om en enzymbehandling av en dissolvingmassa kunde öka substitutionsgraden så att koldisulfid-förbrukningen skulle kunna minskas. Det har i flera tidigare undersökningar av Kvarnlöf (2007), Engström m.fl. (2006) och Henriksson m.fl. (2005) visats att reaktiviteten hos en dissolvingmassa (råvaran i viskosprocessen) ökar när den förbehandlats med endoglukanas (enzym). Kvarnlöf (2007) visade dessutom att mängden koldisulfid som behövdes för att tillverka spinnviskos (i detta examensarbete har en viskösare viskos undersökts) kunde minskas med en tredjedel tack vare enzymbehandlingen.</p><p> </p><p>I detta examensarbete har viskos tillverkats i laboratoriet där processen har anpassats så att den liknar den industriella så mycket som möjligt. Analyser gjordes på viskosens viskositet och substitutionsgrad. En referenskurva tillverkades där den procentuella koldisulfid-satsningen plottades mot viskosens gammatal (substitutionsgraden). Därefter undersöktes hur en enzymbehandling av dissolvingmassan påverkade den färdiga viskosen. Efter enzymbehandlingen av dissolvingmassan utfördes tillverkningsprocessen precis som vanligt för att man skulle kunna se effekterna av enzymet. Enzymet som användes i arbetet var enzympreparationen Carezyme som innehåller endoglukanas. Sedan jämfördes resultaten från analyserna av viskosen tillverkad från enzymbehandlad dissolvingmassa med referensvärdena. Ett positivt resultat hade varit att enzymbehandlad viskos hade ett högre gammatal än viskos tillverkad på vanligt sätt utan enzymförbehandling men med samma koldisulfidsats.</p><p> </p><p>Resultaten visar att substitutionsgraden inte har påverkats alls, dvs. den viskos som tillverkats från enzymbehandlad dissolvingmassa fick gammatal som låg på eller mycket nära referenskurvan. Den enda effekt av enzymet som kunde visas var en viskositetssänkning, vilket inte var något som eftersträvades. Processen har dessutom försvårats av enzymsteget, där kortare fibrer bl.a. gav sämre avvattningsegenskaper. Viskosanalyser har visat att viskosen som tillverkats på laboratoriet inte har samma egenskaper som viskos tillverkad på fabrik.</p>
24

Preparation of Electroconductive Paper by Deposition of Conducting Polymer

Montibon, Elson January 2009 (has links)
<p>The thesis describes an investigation into the interaction between the conducting polymer and cellulosic materials, and the preparation of electroconductive paper. The adsorption behavior of the conducting polymer onto cellulosic materials was characterized. Poly(3,4-ethylenedioxythiophene) doped with poly(4-styrene sulfonate) (PEDOT:PSS) was used as conducting polymer because of its attractive properties in terms of conductivity, water solubility, and environmental stability. The model substrate used for adsorption was microcrystalline cellulose (MCC). Various pH levels and salt concentrations were explored to completely understand the adsorption behavior of PEDOT:PSS. The variation in surface charge characteristics when the pH and salt concentration were changed was monitored by polyelectrolyte titration and zeta potential measurement. The adsorption isotherm showed a broad molecular distribution of the conducting polymer and considerable interaction between the polymer and MCC. As the pH of the solution was increased, the adsorbed amount decreased. With varying salt concentrations, the adsorption passed through a maximum. The extent of deposition of PEDOT:PSS on the surface of cellulosic fibers was investigated using X-ray Photoelectron Spectroscopy (XPS) with a commercial base paper as substrate. XPS analysis of dip-coated paper samples showed PEDOT enrichment on the surface. The degree of washing the dip-coated paper with acidic water did not significantly affect the PEDOT enrichment on the surface.</p><p> </p><p>A base paper was coated with PEDOT:PSS blends to produce electroconductive papers. The bulk conductivities (σ<sub>dc</sub>) of the coated papers were measured using a four-probe technique and impedance spectroscopy. One-side and two-side coating gave comparable conductivity levels. Various organic solvents added to the PEDOT:PSS dispersion at different concentrations showed various effects on the bulk conductivity of the coated paper. Blends containing sorbitol and isopropanol did not enhance the bulk conductivity of the coated paper, and at high concentrations these organic solvents lowered the conductivity. Paper samples coated with a PEDOT:PSS blend containing N-methylpyrrolidinone (NMP) and dimethyl sulfoxide (DMSO) exhibited a higher conductivity than when coated with pure PEDOT:PSS, due to conformational changes and their plasticizing effect. The effect of calendering was investigated and only the sample subjected to 174 kN/m line load after coating showed significant conductivity enhancement. The addition of TiO<sub>2</sub> pigment lowered the bulk conductivity of the paper. Contact angle measurements were made to monitor the effect of coating the paper with PEDOT:PSS blends on the hydrophilicity of the paper samples. The amount of PEDOT:PSS deposited in the fiber network was determined using total sulfur analysis. Thus, this study makes use of conventional paper surface treatment as method for achieving bulk conductivity of paper in the semi-conductor range without significantly decreasing the paper strength.</p> / Printed Polymer Electronics
25

Novel oil resistant cellulosic materials

Aulin, Christian January 2009 (has links)
The aim of this study has been to prepare and characterise oil resistant cellulosic materials, ranging from model surfaces to papers and aerogels. The cellulosic materials were made oil resistant by chemical and topographic modifications, based on surface energy, surface roughness and barrier approaches. Detailed wetting studies of the prepared cellulosic materials were made using contact angle measurements and standardised penetration tests with different alkanes and oil mixtures. A significant part of the activities were devoted to the development of model cellulosic surfaces with different degrees of crystalline ordering for the wetting studies. Crystalline cellulose I, II and amorphous cellulose surfaces were prepared by spin-coating of cellulose nanocrystal or microfibrillated cellulose (MFC) dispersions, with Langmuir-Schaefer (LS) films or by a layer-by-layer (LbL) deposition technique. The formation of multilayers consisting of polyethyleneimine (PEI)/anionic MFC or cationic MFC/anionic MFC was further studied and optimized in terms of total layer thickness and adsorbed amount by combining Dual Polarization Interferometry (DPI) or Stagnation Point Adsorption Reflectrometry (SPAR) with a Quartz Crystal Microbalance with Dissipation (QCM-D). The smooth cellulosic surfaces prepared had different molecular and mesostructure properties and different surface energies as shown by X-ray diffraction, Atomic Force Microscopy (AFM) imaging, ellipsometry measurements and contact angle measurements. The cellulose model surfaces were found to be ideal for detailed wetting studies, and after the surface has been coated or covalently modified with various amounts of fluorosurfactants, the fluorinated cellulose films were used to follow the spreading mechanisms of different oil mixtures. The viscosity and surface tension of the oil mixtures, as well as the dispersive surface energy of the cellulose surfaces, were found to be essential parameters governing the spreading kinetics. A strong correlation was found between the surface concentration of fluorine, the dispersive surface energy and the measured contact angle of the oil mixtures. Silicon surfaces possessing structural porous characteristics were fabricated by a plasma etching process. The structured silicon surfaces were coated with sulfate-stabilized cellulose I nanocrystals using the LbL technique. These artificial intrinsically oleophilic cellulose surfaces were made highly oleophobic when coated with a thin layer of fluorinated silanes. By comparison with flat cellulose surfaces, which are oleophilic, it is demonstrated that the surface energy and the surface texture are essential factors preventing oil from spreading on the surface and, thus, inducing the observed macroscopic oleophobic properties. The use of the MFC for surface coating on base papers demonstrated very promising characteristics as packaging materials. Environmental-Scanning Electron Microscopy (E-SEM) micrographs indicated that the MFC layer reduced the sheet porosity, i.e. the dense structure formed by the nanofibers resulted in superior oil barrier properties. Attempts were made to link the procedure for preparation of the MFC dispersions to the resulting microstructure of the coatings, and film porosity and the film moisture content to the resulting permeability properties. Finally, MFC aerogels were successfully prepared by freeze-drying. The surface texture of the porous aerogels was carefully controlled by adjusting the concentration of the MFC dispersion used for the freeze-drying. The different scales of roughness of the MFC aerogels were utilised, together with the very low surface energy created by fluorination of the aerogel, to induce highly oleophobic properties. / QC 20100623
26

Laboratory method for the study of moisture-induced waviness in paper

Land, Cecilia January 2004 (has links)
Paper that is subjected to moisture undergoes dimensional changes. It expands during moistening and shrinks during drying. When the paper is under tension between rollers, the effects are complex since shrinkage and expansion are restricted in the width direction. Waves can then appear on the paper web. This can be a problem in heatset web offset printing. The problem is known as waviness or fluting. The printed papers exhibit a wavy shape, which is visually disturbing due to light reflections which create glossy streaks. The aim of the work described in this thesis was to develop a method suitable for studying the moisture- and tension-induced waviness. Experiments were carried out on a laboratory scale to study how such waves develop during moistening and drying. The experimental setup was based on a modified tensile tester. A CCD camera and image analysis based on the STFI-OptiTopo technique was used to characterise the waviness. Moistening and drying were achieved by changing the surrounding air humidity. The method was used to study the effect of moisture uptake by the paper, and to evaluate the effect of tension on the waviness. It was found that increasing moisture resulted in a higher waviness amplitude, but that the web tension controlled the wavelength of the waviness. A high tension gave rise to a shorter wavelength. The measured wavelength was compared with a previously suggested model and the predicted wavelength was about twice as high as the measured wavelength. / When paper becomes damp it can develop waves which can be a problem with heatset web offset printing. Paper with waves may have glossy streaks after printing. Laboratory experiments studied the effect of moisture uptake by the paper. Readings were taken at a range of air humidities. The effect of tension on the waviness was also measured. The waviness was characterised using a charge coupled device (CCD) camera and the STFI-Packforsk OptiTopo technique to analyse the images. When the humidity was increased the amplitude of the waves increased. A high tension resulted in shorter wavelengths. Results from a previous model were used as a comparison.
27

Preparation of Electroconductive Paper by Deposition of Conducting Polymer

Montibon, Elson January 2009 (has links)
The thesis describes an investigation into the interaction between the conducting polymer and cellulosic materials, and the preparation of electroconductive paper. The adsorption behavior of the conducting polymer onto cellulosic materials was characterized. Poly(3,4-ethylenedioxythiophene) doped with poly(4-styrene sulfonate) (PEDOT:PSS) was used as conducting polymer because of its attractive properties in terms of conductivity, water solubility, and environmental stability. The model substrate used for adsorption was microcrystalline cellulose (MCC). Various pH levels and salt concentrations were explored to completely understand the adsorption behavior of PEDOT:PSS. The variation in surface charge characteristics when the pH and salt concentration were changed was monitored by polyelectrolyte titration and zeta potential measurement. The adsorption isotherm showed a broad molecular distribution of the conducting polymer and considerable interaction between the polymer and MCC. As the pH of the solution was increased, the adsorbed amount decreased. With varying salt concentrations, the adsorption passed through a maximum. The extent of deposition of PEDOT:PSS on the surface of cellulosic fibers was investigated using X-ray Photoelectron Spectroscopy (XPS) with a commercial base paper as substrate. XPS analysis of dip-coated paper samples showed PEDOT enrichment on the surface. The degree of washing the dip-coated paper with acidic water did not significantly affect the PEDOT enrichment on the surface.   A base paper was coated with PEDOT:PSS blends to produce electroconductive papers. The bulk conductivities (σdc) of the coated papers were measured using a four-probe technique and impedance spectroscopy. One-side and two-side coating gave comparable conductivity levels. Various organic solvents added to the PEDOT:PSS dispersion at different concentrations showed various effects on the bulk conductivity of the coated paper. Blends containing sorbitol and isopropanol did not enhance the bulk conductivity of the coated paper, and at high concentrations these organic solvents lowered the conductivity. Paper samples coated with a PEDOT:PSS blend containing N-methylpyrrolidinone (NMP) and dimethyl sulfoxide (DMSO) exhibited a higher conductivity than when coated with pure PEDOT:PSS, due to conformational changes and their plasticizing effect. The effect of calendering was investigated and only the sample subjected to 174 kN/m line load after coating showed significant conductivity enhancement. The addition of TiO2 pigment lowered the bulk conductivity of the paper. Contact angle measurements were made to monitor the effect of coating the paper with PEDOT:PSS blends on the hydrophilicity of the paper samples. The amount of PEDOT:PSS deposited in the fiber network was determined using total sulfur analysis. Thus, this study makes use of conventional paper surface treatment as method for achieving bulk conductivity of paper in the semi-conductor range without significantly decreasing the paper strength. / Printed Polymer Electronics
28

Xylan Reactions in Kraft Cooking : Process and Product Considerations

Danielsson, Sverker January 2007 (has links)
Xylan is the main hemicellulose in birch, eucalyptus, and most other hardwood species. During kraft pulping a series of chemical reactions and physical processes involving xylan takes place. The processes studied here are the following: dissolution, degradation, redeposition onto the fibres, side-group conversion, and cleavage of side groups off the xylan backbone. The side group in native xylan consists of methylglucuronic acid, which is partly converted into hexenuronic acid during kraft cooking. Hexenuronic acid affects the pulp in terms of increased brightness reversion and reduced bleachability. The kinetics of the side-group cleavage and conversion reactions were studied using various analytical tools. The study revealed that the most common methods for methylglucuronic acid quantifcation can be signifcantly improved in terms of accuracy. A modifcation and combination of two of the methods was suggested and evaluated. In order to minimise the hexenuronic acid content, a common suggestion involves the use of a high cooking temperature. The kinetic study found that the degree of substitution of pulp xylan is only slightly affected by temperature, and that the observed effects are likely to be more associated with the xylan content of the pulp than with the hexenuronic acid content of the xylan. For the dissolved xylan, however, the degree of substitution indicated a high temperature dependency for birch kraft cooking. By collecting black liquors at different stages in the cook, different molecular properties of the dissolved xylan was obtained. The liquors were charged at later parts of the cook, making the dissolved xylan to reattach to the fibres. Depending on the molecular properties of the added xylan, the tensile strength properties of the produced paper were improved. These improvements in paper properties were correlated to the molecular behaviour of the added xylan in solution. / QC 20100702
29

Flow Field and Fibre Fractionation Studies in Hydrocyclones

Bergström, Jonas January 2006 (has links)
Hydrocyclones can be used to fractionate fibres according to their papermaking potential. The obtained fractions typically differ in fibre wall thickness and/or degree of fibre treatment. Despite a multitude of potential application scenarios, the process has so far had little commercial success. This is largely explained by the low fractionation efficiency and unfavourable operating characteristics of the process. The fractionation efficiency of a hydrocyclone is closely related to its flow field. The influence of pulp concentration on the tangential velocity field was therefore studied, by using a self-cleaning pitometer. It was found that the pulp concentration had a strong influence on the tangential velocity. At a feed pulp concentration above 7.5 g/l, the suspension rotated almost as a solid body. As a consequence, the magnitude of radial acceleration and shear stresses decreased dramatically. It is suggested that this is detrimental to the fractionation efficiency. The radial velocity field was measured using an Ultrasonic Velocity Profiler. The measurements showed that the rotational centre of the flow field did not correspond with the geometrical centre of the hydrocyclone. This displacement caused the tangential velocity component of the vortex to contribute substantially to the measurement result of the radial velocity component. Based on the findings in respect to the flow field studies, a novel design for a fibre fractionation hydrocyclone was proposed. The flow field inside this hydrocyclone was compared to that in a conventional hydrocyclone. It was found, that high radial acceleration and shear stresses could be maintained in the novel design even at high fibre concentration. The fractionation efficiency of the novel hydrocyclone was characterised in terms of surface roughness difference between fine and coarse fraction. When operated with refined bleached softwood kraft pulp, the novel hydrocyclone could produce fractions with a substantial surface roughness difference without deteriorating the dewatering characteristics of the fine fraction. A low thickening of the reject is proposed to be the explanation for that. When fractionating TMP, the best efficiency occurred at a concentration of 10 g/l. / QC 20100804
30

Fibre flow mechanisms

Bergström, Roger January 2005 (has links)
The flow behaviour, and primarily the floc-floc interaction, of pulp paper suspensions have been studied visually. Analogy models based on these observations have been developed as well as the identification of important parameters of floc break-up in low shear rate flow fields. Floc compressions and the locations of voids (areas of lower fibre concentration) where found to influence the floc splitting mechanism. Based on this investigation an equipment for measuring the load carrying ability of fibre flocs and networks was designed, and the effect of measurement geometry, network structure and fibre suspension concentration was investigated. The load carrying ability with concentration increases rapidly when going from 1% to 2% in initial suspension concentration. A model handling the fibre floc behaviour during extension and compression has been developed, and some basic flocculated flow mechanisms are discussed on an analogy basis. A modified Voigt element is use, describing mainly the compressional behaviour and plastic behaviour of loose fibre network structures. Further the pos- sibility of stress chain formation is discussed on a fibre level as well as on a floc level. The effect of fibre flow (shear field) occurring in the forming zone of a roll former has been studied in detail. Basic forming mechanisms on floc scale has been investi- gated, and the effect of running parameters like dewatering pressure and jet-to-wire speed difference as well as the fibre type and concentration of the pulp suspension has been evaluated. It is evident that floc elongation increases with shear rate (jet-to-wire speed difference) and lower dewatering rate. The latter is because the fibre floc is subjected to the shear field longer due to slower immobilisation. Shorter fibre tends to create weaker networks, which promotes a higher elongation of the flocs. / QC 20100901

Page generated in 0.0813 seconds