• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 10
  • 10
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the importance of radical formation in ozone bleaching

Ragnar, Martin January 2000 (has links)
No description available.
2

On the importance of radical formation in ozone bleaching

Ragnar, Martin January 2000 (has links)
No description available.
3

Aspects of extended impregnation kraft cooking for high-yield pulping of hardwood

Wedin, Helena January 2012 (has links)
The long-term trend regarding wood is an increase in price. Because wood contributes to a large part of production costs, the efficient utilisation of wood is greatly desired to reduce production costs for kraft pulp producers. During the 1990s, the development of improved modified kraft cooking began, which led to higher yields. There was also a trend of terminating kraft cooking at a higher kappa number to maximise the overall yield. For hardwood, the defibration point became a critical setback in allowing this termination at a high kappa number. This thesis discusses how this issue has been tackled in the laboratory by using improved modified kraft cooking combined with extended impregnation to enable a decrease in reject content and shift the defibration point towards a higher kappa number for hardwood. This lab concept is referred to as extended impregnation kraft cooking (EIC), and this thesis reveals that EIC cooking efficiently reduces the reject content for both birch and eucalypt. By using EIC cooking, the defibration point was shifted to a kappa number of ca. 30 from ca. 20 using conventional kraft cooking. This study demonstrates the great potential for achieving a higher overall yield for eucalypt by terminating the EIC cooking at a high kappa number, but with the conditions used in this thesis, no improvement in yield was observed for birch.   An important issue is that the termination of kraft cooking at high kappa number increases the demand for extended oxygen delignification to reach a similar kappa number into bleaching, i.e., due to cost and environmental reasons. Extended oxygen delignification was shown to be possible for both birch and eucalypt EIC pulps (i.e., from kappa number 27 to 10) with an acceptable pulp viscosity number.   The other part of this thesis addresses aspects regarding the limitations in oxygen delignification. It has previously been shown in the literature that a high xylan yield of kraft cooking could negatively affect the efficiency of subsequent oxygen delignification. In this work, the increased xylan content in eucalypt kraft pulp within the range of 8–18% had only a marginally negative impact on the oxygen delignification efficiency after correcting for the HexA contribution to the kappa number. It is also desired to extend the oxygen delignification towards lower kappa number, i.e., below kappa number 10 to decrease the bleaching chemical requirement. In this study, the hypothesis that the reduced efficiency of oxygen delignification at low kappa numbers could partly be due to the formation of oxidisable carbohydrate-related structures (i.e., HexA and/or other non-lignin structures) was also tested. No formation was established. On the other hand, a final oxygen delignification stage in the bleaching could be an attractive alternative for reducing yellowing and enhancing brightness; in fact, this has led to the development of a patent (SE 528066). / Ved står för en stor del av produktionskostnaderna vid framställning av sulfatmassa. Då vedpriserna har ökat genom åren är ett effektivt utnyttjande av veden önskvärt för att kunna sänka produktionskostnaderna. Under 1990-talet förbättrades den modifierade sulfatkokningen vilket innebar möjlighet till högre massautbyte. För att maximera massautbytet styrdes kokningsprocessen mot ett högre kappatal. Detta har visat sig vara svårare för lövved än för barrved, eftersom defibrerbarhetspunkten utgör ett kritiskt hinder. I denna avhandling har laborationsstudier utförts där förbättrad modifierad sulfatkokning kombinerats med förlängd impregnering för att kunna sänka spethalten och därmed förskjuta defibrerbarhetspunkten mot ett högre kappatal. Detta koncept kallas för extended impregnation kraft cooking (EIC). EIC-kokning visade sig vara en effektiv metod för att minska spethalten hos björk och eukalyptus. Med EIC-kokning kunde defibrerbarhetspunkten höjas från cirka 20 till cirka 30. I denna avhandling klarläggs att det finns stora möjligheter att öka massautbytet för eukalyptus genom att avsluta sulfatkoket vid ett högre kappatal. För björk kunde ingen ökning av massutbytet uppnås genom ovanstående metod.   Vid ett högre kappatal efter sulfatkoket ställs även krav på förlängd syrgasdelignifiering, för att kunna behålla samma kappatal in till blekeriet. Det visade sig vara fullt möjligt att förlänga syrgasdelignifieringen för de EIC-kokade björk- och eukalyptusmassorna (d.v.s. från kappatal 27 till 10) med accepterad massaviskositet.   Den andra delen av avhandlingen tar upp aspekter på syrgasdelignifieringens begränsningar. Tidigare studier har visat att ett högre utbyte av xylan vid sulfatkokning kan vara negativt för syrgasdelignifieringens effektivitet.  I denna studie har det påvisats att en ökad xylanhalt i intervallet 8–18 procent i eukalyptusmassa endast har en marginell negativ inverkan på syrgasdelignifieringens effektivitet efter att kappatalet korrigerats för HexA. Det är önskvärt att förlänga syrgasdelignifieringen till ett lägre kappatal än 10 för att minska förbrukningen av blekkemikalier. I den här studien prövades hypotesen att syrgasdelignifieringens begränsningar vid låga kappatal, under 10, delvis skulle kunna bero på bildning av oxiderbara kolhydratrelaterade strukturer (d.v.s. HexA och/eller andra okända ”non-lignin”-strukturer). Ingen bildning kunde dock observeras. Däremot indikerades att ett syrgassteg i slutet av bleksekvensen skulle kunna vara ett eftersträvansvärt alternativ för minskad eftergulning och ökad ljushet, vilket ledde till ett patent (SE 528066). / QC 20120507
4

On the bleachability of alkaline pulps. The influence of residual lignin structure.

Wafa Al-Dajani, Waleed January 2001 (has links)
No description available.
5

Xylan Reactions in Kraft Cooking : Process and Product Considerations

Danielsson, Sverker January 2007 (has links)
Xylan is the main hemicellulose in birch, eucalyptus, and most other hardwood species. During kraft pulping a series of chemical reactions and physical processes involving xylan takes place. The processes studied here are the following: dissolution, degradation, redeposition onto the fibres, side-group conversion, and cleavage of side groups off the xylan backbone. The side group in native xylan consists of methylglucuronic acid, which is partly converted into hexenuronic acid during kraft cooking. Hexenuronic acid affects the pulp in terms of increased brightness reversion and reduced bleachability. The kinetics of the side-group cleavage and conversion reactions were studied using various analytical tools. The study revealed that the most common methods for methylglucuronic acid quantifcation can be signifcantly improved in terms of accuracy. A modifcation and combination of two of the methods was suggested and evaluated. In order to minimise the hexenuronic acid content, a common suggestion involves the use of a high cooking temperature. The kinetic study found that the degree of substitution of pulp xylan is only slightly affected by temperature, and that the observed effects are likely to be more associated with the xylan content of the pulp than with the hexenuronic acid content of the xylan. For the dissolved xylan, however, the degree of substitution indicated a high temperature dependency for birch kraft cooking. By collecting black liquors at different stages in the cook, different molecular properties of the dissolved xylan was obtained. The liquors were charged at later parts of the cook, making the dissolved xylan to reattach to the fibres. Depending on the molecular properties of the added xylan, the tensile strength properties of the produced paper were improved. These improvements in paper properties were correlated to the molecular behaviour of the added xylan in solution. / QC 20100702
6

On the bleachability of alkaline pulps. The influence of residual lignin structure.

Wafa Al-Dajani, Waleed January 2001 (has links)
No description available.
7

On the Interrelation Between Kraft Cooking Conditions and Pulp Composition

Gustavsson, Catrin January 2006 (has links)
In the early 1990’s, a lot of work was focused on extending the kraft cook to a low lignin content (low kappa number). The driving force was the need to further reduce the environmental impact of the bleaching, as less delignification work would be needed there. However, the delignification during the residual phase of a kraft cook is very slow and, due to its poor selectivity, it is a limiting factor for the lignin removal. If the amount of lignin reacting according to the residual phase could be reduced, it would be possible to improve the selectivity of the kraft cook. In the work described in this thesis, special attention has been given to the activation energy of the slowly reacting residual phase of a kraft cook on softwood raw material and to the influence of different cooking parameters on the amount of the residual phase lignin. The activation energy of the residual phase delignification of the kraft cook was shown to be higher than that of the bulk phase delignification. In order to decrease the amount of residual phase lignin, it was essential to have a high concentration of hydrogen sulphide ions when cooking with a low hydroxide concentration. It was also important to avoid a high sodium ion concentration when cooking with low hydroxide and low hydrogen sulphide ion concentrations. Furthermore, it was demonstrated that dissolved wood components had a positive effect on the delignification rate in the bulk phase of a kraft cook. The influence of different cooking parameters in the extended softwood kraft process on the bleachability (i.e. the ease with which the pulps can be bleached to a target brightness) of the manufactured pulp was also investigated. If variations in bleachability were seen, an attempt would also be made to find chemical reasons to explain the differences. It was difficult to establish clear relationships between the chemical structures of the residual lignin and the bleachability of the pulp. However, it was seen that the higher the content of β-aryl ether structures in the residual lignin after cooking, the better was the QPQP*-bleachability. In the middle/end of the 1990’s, the focus moved from extended cooking to efficient utilisation of the wood raw material, e.g. by interrupting the kraft cook at higher kappa number levels and choosing appropriate cooking conditions to maximise the cooking yield. A high cooking yield often leads to a somewhat higher hexenuronic acid (HexA) content of the pulp at a given kappa number. Therefore additional attention was devoted to how the HexA content and carbohydrate composition were affected, e.g. by a set of cooking parameters. Performing these studies it was also important to investigate the effects of a low HexA (after cooking) strategy on such vital factors as the cooking yield, the bleachability and the yellowing characteristics of the pulp obtained. It proved to be difficult to significantly reduce the HexA content in a kraft pulp by altering the cooking conditions for both softwood and the hardwood Eucalyptus Globulus. A reduction in HexA content can be achieved by extending the cook to lower kappa numbers, or by using a high hydroxide concentration, a low hydrogen sulphide concentration or a high sodium ion concentration. However, neither of these strategies is attractive for industrial implementation since they would result in an extensive loss of yield, viscosity and strength. / <p>QC 20100825</p>
8

Characterization of chemical pulp fiber surfaces with an emphasis on the hemicelluloses

Sjöberg, John January 2003 (has links)
No description available.
9

On the importance of oxidizable structures in bleached kraft pulps

Sevastyanova, Olena January 2005 (has links)
After cooking, kraft pulps always contain not only residual lignin but also significant amounts of hexenuronic acid and other non-lignin structures oxidizable by permanganate under the standard kappa number determination conditions. These here referred to as false lignin. Like ordinary lignin, the false lignin also consumes bleaching chemicals, thus increasing both the production costs and the environmental impact of bleach plant effluents. The false lignin also has an effect on pulp properties such as brightness stability. This necessitates the development of efficient experimental routines for the determination of false lignin in different types of unbleached and bleached kraft pulps, together with studies of its formation, chemical behaviour, and ultimate fate. The main aim of this work has been to establish a method for the quantification of various types of oxidizable structures in bleached kraft pulps and to study their impact on pulp quality, particularly, on the brightness stability of pulps bleached in elemental-chlorine-free (ECF) and a totally-chlorine-free (TCF) processes. Part of this research deals with the relationship between the kappa number and the lignin content in the case of partly oxidized lignins. Spruce and birch kraft pulps processed according to the ODEQP and OQ(OP)Q(PO) bleaching sequences, respectively, have been analyzed. It has been found that the oxidation equivalent of the residual lignin decreases with increasing degree of oxidation along each bleaching sequence. This finding has been further supported by experiments with a number of model compounds. The Ox-Dem kappa number method has been shown to be an accurate means of determining the residual lignin content and of monitoring the efficiency of lignin removal along different bleaching sequences. It has been demonstrated that the kappa number can always be fractioned into partial contributions, the first of which comes from the residual lignin and is measured by the Ox-Dem kappa number, and the second from the false lignin and is given by the difference between the standard kappa number and the Ox-Dem kappa number. The effect of false lignin on the pulp kappa number is most pronounced in unbleached and oxygen-delignified kraft pulps. The extractability of residual and false lignin in different solvents has been investigated. The changes that occurred in the kappa number following different extraction steps have been compared with corresponding changes in the chemical composition and the conclusion has been drawn that the hemicellulose component of a kraft pulp is a major sourse of non-lignin structures contributing to the kappa number. The influence on the brightness stability of various oxidizable structures, viz.: residual lignin, hexenuronic acid and other non-lignin structures, in spruce, birch and eucalyptus kraft pulps bleached in ECF and TCF type processes was studied. It was demonstrated that the selective removal of all false lignin structures significantly improves the brightness stability. The degree of yellowing was found to be proportional to the content of HexA groups in pulps. It has been shown that 2-furancarboxylic acid, 5-formyl-2furancarboxylic acid and reductic acid are formed during the course of thermal yellowing. The influence of two bleaching sequences, D0(EP)D1 (ECF-type) and Q1(OP)Q2(PO) (TCF)-type, on the content of different oxidizable structures in eucalyptus kraft pulp was studied in relation to the brightness stability of the pulp. It was shown by kappa number fractionation that pulp bleached to full brightness with ECF- and TCF-type sequences contains different amounts of HexA. The most significant discoloration was observed in the case of TCF-bleached pulp having an especially high content of HexA. The mechanism of the moist (8 % moisture) thermal yellowing of fully bleached kraft pulps was further studied using dissolving pulp impregnated with a set of model compounds representing the most likely HexA degradation products, viz. as 2-furancarboxylic acid (FA), 5-formyl-2-furancarboxylic acid (FFA) and reductic acid (RA), either alone or in combination with Fe(II) or Fe(III) ions. It was found that the latter two acids take part in reactions leading to colour formation whereas 2-furancarboxylic acid does not. The effect of iron ions on the colour formation appears to vary with their oxidation state. The brightness loss caused by either FFA or RA, present in an amounts similar to the content of HexA in industrial pulps, was of the same order of magnitude as that observed in industrial pulps aged under the same conditions. Based on these findings, it is suggested that the overall mechanism of moist thermal yellowing involves several stages, including the degradation of hexenuronic acid and the formation of reactive precursors, such as 5-formyl-2-furancarboxylic acid and reductic acid. The presence of ferrous ions further enhances the discoloration. / QC 20101005
10

Characterization of chemical pulp fiber surfaces with an emphasis on the hemicelluloses

Sjöberg, John January 2003 (has links)
No description available.

Page generated in 0.0991 seconds